光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
Spectroscopy and Spectral Analysis
2015年
11期
3161-3166
,共6页
韩志钟%任丽丽%潘海波%李春艳%陈敬华%陈建中
韓誌鐘%任麗麗%潘海波%李春豔%陳敬華%陳建中
한지종%임려려%반해파%리춘염%진경화%진건중
CdZnSe%三元量子点%二氧化钛纳米管%光催化
CdZnSe%三元量子點%二氧化鈦納米管%光催化
CdZnSe%삼원양자점%이양화태납미관%광최화
CdZnSe%Ternary quantum dots%TiO2 nanotubes%Photocatalysis
以六水合硝酸镉为镉源,硝酸锌为锌源,通过硼氢化钠还原硒单质制得NaHSe ,并作为硒源,通过胶体化学法制备了一系列具有不同组分的水溶性Cd1- xZnxSe三元量子点。利用X射线粉末衍射仪(XRD)和高分辨透射电镜(HRTEM)分析所制得的Cd1- xZnxSe的晶体结构和形貌,表明所制得三元量子点为立方结构,呈规则球状,平均粒径约为4 nm。通过改变三元量子点的Cd和Zn元素的配比,调节Cd1- x Znx Se的能带结构,有效调控其光谱学性质;与ZnSe和CdSe等二元量子点相比,Cd1- x Znx Se的紫外可见光吸收光谱及荧光发射光谱都发生明显的红移。采用直接浸渍法,制备 Cd0.5 Zn0.5 Se三元量子点敏化 TiO2纳米管(TNTs)复合材料(Cd0.5Zn0.5Se@ TNTs)。TEM结果显示Cd0.5Zn0.5Se三元量子点紧密结合在纳米管表面,红外谱图表明TiO2和Cd0.5Zn0.5Se之间形成 Ti—Se键,有利于提高复合材料的稳定性。相对于纯 TNTs ,复合材料的紫外可见光吸收光谱在可见光区的吸收明显增强,吸收带边从400 nm红移至700 nm左右;同时,复合Cd0.5 Zn0.5 Se三元量子点后,可以有效地抑制光生电子‐空穴对的复合,提高复合材料在可见光区域的光催化效率。可见光照射60 min后,催化剂 Cd0.5 Zn0.5 Se@ TNTs对罗丹明B(RhB)光降解率可达到100%,分别约为纯TNTs和纯Cd0.5Zn0.5Se的3.3倍和2.5倍。
以六水閤硝痠鎘為鎘源,硝痠鋅為鋅源,通過硼氫化鈉還原硒單質製得NaHSe ,併作為硒源,通過膠體化學法製備瞭一繫列具有不同組分的水溶性Cd1- xZnxSe三元量子點。利用X射線粉末衍射儀(XRD)和高分辨透射電鏡(HRTEM)分析所製得的Cd1- xZnxSe的晶體結構和形貌,錶明所製得三元量子點為立方結構,呈規則毬狀,平均粒徑約為4 nm。通過改變三元量子點的Cd和Zn元素的配比,調節Cd1- x Znx Se的能帶結構,有效調控其光譜學性質;與ZnSe和CdSe等二元量子點相比,Cd1- x Znx Se的紫外可見光吸收光譜及熒光髮射光譜都髮生明顯的紅移。採用直接浸漬法,製備 Cd0.5 Zn0.5 Se三元量子點敏化 TiO2納米管(TNTs)複閤材料(Cd0.5Zn0.5Se@ TNTs)。TEM結果顯示Cd0.5Zn0.5Se三元量子點緊密結閤在納米管錶麵,紅外譜圖錶明TiO2和Cd0.5Zn0.5Se之間形成 Ti—Se鍵,有利于提高複閤材料的穩定性。相對于純 TNTs ,複閤材料的紫外可見光吸收光譜在可見光區的吸收明顯增彊,吸收帶邊從400 nm紅移至700 nm左右;同時,複閤Cd0.5 Zn0.5 Se三元量子點後,可以有效地抑製光生電子‐空穴對的複閤,提高複閤材料在可見光區域的光催化效率。可見光照射60 min後,催化劑 Cd0.5 Zn0.5 Se@ TNTs對囉丹明B(RhB)光降解率可達到100%,分彆約為純TNTs和純Cd0.5Zn0.5Se的3.3倍和2.5倍。
이륙수합초산력위력원,초산자위자원,통과붕경화납환원서단질제득NaHSe ,병작위서원,통과효체화학법제비료일계렬구유불동조분적수용성Cd1- xZnxSe삼원양자점。이용X사선분말연사의(XRD)화고분변투사전경(HRTEM)분석소제득적Cd1- xZnxSe적정체결구화형모,표명소제득삼원양자점위립방결구,정규칙구상,평균립경약위4 nm。통과개변삼원양자점적Cd화Zn원소적배비,조절Cd1- x Znx Se적능대결구,유효조공기광보학성질;여ZnSe화CdSe등이원양자점상비,Cd1- x Znx Se적자외가견광흡수광보급형광발사광보도발생명현적홍이。채용직접침지법,제비 Cd0.5 Zn0.5 Se삼원양자점민화 TiO2납미관(TNTs)복합재료(Cd0.5Zn0.5Se@ TNTs)。TEM결과현시Cd0.5Zn0.5Se삼원양자점긴밀결합재납미관표면,홍외보도표명TiO2화Cd0.5Zn0.5Se지간형성 Ti—Se건,유리우제고복합재료적은정성。상대우순 TNTs ,복합재료적자외가견광흡수광보재가견광구적흡수명현증강,흡수대변종400 nm홍이지700 nm좌우;동시,복합Cd0.5 Zn0.5 Se삼원양자점후,가이유효지억제광생전자‐공혈대적복합,제고복합재료재가견광구역적광최화효솔。가견광조사60 min후,최화제 Cd0.5 Zn0.5 Se@ TNTs대라단명B(RhB)광강해솔가체도100%,분별약위순TNTs화순Cd0.5Zn0.5Se적3.3배화2.5배。
In this work ,cadmium nitrate hexahydrate [Cd(NO3 )2 ?6H2 O] is as a source of cadmium ,zinc nitrate [Zn(NO3 )2 ] as a source of zinc source ,and NaHSe as a source of selenium which was prepared through reducing the elemental selenium with sodium borohydride (NaBH4 ) .Then water‐soluble Cd1 - xZnxSe ternary quantum dots with different component were prepared by colloid chemistry .The as‐prepared Cd1 - xZnxSe ternary quantum dots exhibit stable fluorescent property in aqueous solution ,and can still maintain good dispersivity at room temperature for four months .Powder X‐ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) were used to analyze crystal structure and morphology of the prepared Cd1 - xZnxSe . It is found that the as‐prepared ternary quantum dots are cubic phase ,show as sphere ,and the average of particle size is approxi‐mate 4 nm .The spectral properties and energy band structure of the as‐prepared ternary quantum dots were modulated through changing the atom ratio of elements Zn and Cd .Compared with binary quantum dots CdSe and ZnSe ,the ultraviolet‐visible (UV‐Visible) absorption spectrum and fluorescence (FL) emission spectrum of ternary quantum dots are both red‐shift .The compos‐ites (Cd0.5Zn0.5Se@ TNTs)of Cd0.5Zn0.5Se ternary quantum dots and TiO2 nanotubes (TNTs)were prepared by directly immer‐ging TNTs into quantum dots dispersive solution for 5 hours .TEM image shows that the Cd0.5 Zn0.5 Se ternary quantum dots were closely combined to nanotube surface .The infrared spectra show that the Ti‐Se bond was formed between Cd0.5Zn0.5Se ter‐nary quantum dots and TiO2 nanotubes ,which improve the stability of the composite .Compared to pristine TNTs ,UV‐Visible absorption spectrum of the composites is significantly enhanced in the visible region of light .And the absorption band edge of Cd0.5Zn0.5Se@ TNTs red‐shift from 400 to 700 nm .The recombination of the photogenerated electron‐hole pairs was restrained with the as‐prepared ternary quantum dots .Therefore ,the visible‐light photocatalytic efficiency was greatly improved .After visible‐light irradiation for 60 min ,the degradation of Cd0.5 Zn0.5 Se@ TNTs photocatalysts for RhB is nearly 100% ,which is about 3.3 times of that of pristine TNTs and 2.5 times of that of pure Cd0.5Zn0.5Se ternary quantum dots ,respectively .