粉末冶金材料科学与工程
粉末冶金材料科學與工程
분말야금재료과학여공정
Materials Science and Engineering of Powder Metallurgy
2015年
5期
777-781
,共5页
粉末高速钢%回火%深冷处理%碳化物%硬度
粉末高速鋼%迴火%深冷處理%碳化物%硬度
분말고속강%회화%심랭처리%탄화물%경도
powder metallurgy high speed steel%temper%cryogenic treatment%carbide%hardness
对退火态AHP T15M粉末高速钢进行盐浴淬火处理,然后对退火态样品与淬火态样品进行深冷处理、回火处理和同步热磁分析,研究深冷处理对AHP T15M粉末高速钢回火转变的影响.结果表明,退火态粉末高速钢中的铁素体含量(体积分数)约为71.5%;淬火态钢中的马氏体含量(体积分数,下同)约为45.2%,在经过1、2、3次823 K/1 h连续回火处理后,马氏体含量分别约为68.5%、71.0%和71.3%;回火前增加143 K深冷处理工序,在深冷后和1、2、3次回火后,钢中马氏体含量分别约为59.8%、69.9%、70.9%和71.3%.深冷处理可提前残留奥氏体向马氏体的转变进程、抑制残留奥氏体中的碳化物析出,并促进马氏体中更大量(约2.3%)的微细碳化物析出,使钢的硬度提高52 HV0.1.
對退火態AHP T15M粉末高速鋼進行鹽浴淬火處理,然後對退火態樣品與淬火態樣品進行深冷處理、迴火處理和同步熱磁分析,研究深冷處理對AHP T15M粉末高速鋼迴火轉變的影響.結果錶明,退火態粉末高速鋼中的鐵素體含量(體積分數)約為71.5%;淬火態鋼中的馬氏體含量(體積分數,下同)約為45.2%,在經過1、2、3次823 K/1 h連續迴火處理後,馬氏體含量分彆約為68.5%、71.0%和71.3%;迴火前增加143 K深冷處理工序,在深冷後和1、2、3次迴火後,鋼中馬氏體含量分彆約為59.8%、69.9%、70.9%和71.3%.深冷處理可提前殘留奧氏體嚮馬氏體的轉變進程、抑製殘留奧氏體中的碳化物析齣,併促進馬氏體中更大量(約2.3%)的微細碳化物析齣,使鋼的硬度提高52 HV0.1.
대퇴화태AHP T15M분말고속강진행염욕쉬화처리,연후대퇴화태양품여쉬화태양품진행심랭처리、회화처리화동보열자분석,연구심랭처리대AHP T15M분말고속강회화전변적영향.결과표명,퇴화태분말고속강중적철소체함량(체적분수)약위71.5%;쉬화태강중적마씨체함량(체적분수,하동)약위45.2%,재경과1、2、3차823 K/1 h련속회화처리후,마씨체함량분별약위68.5%、71.0%화71.3%;회화전증가143 K심랭처리공서,재심랭후화1、2、3차회화후,강중마씨체함량분별약위59.8%、69.9%、70.9%화71.3%.심랭처리가제전잔류오씨체향마씨체적전변진정、억제잔류오씨체중적탄화물석출,병촉진마씨체중경대량(약2.3%)적미세탄화물석출,사강적경도제고52 HV0.1.
Magnetization measuring in synchronism with cryogenic treatment and tempering of AHP T15M powder metallurgy high speed steel (PM HSS) at different states was carried out by vibration sample magnetometer (VSM). Effect of cryogenic treatment on tempering transformation of AHP T15M PM HSS was studied. The results show that ferrite content in annealed PM HSS is 71.5% (volume fraction); Martensitic volume fraction value in quenched steel is approximately 45.2%. Martensitic volume fraction values in the first, second and third time tempered steel are approximately 68.5%, 71.0% and 71.3%, respectively. With addition of cryogenic treatment, martensitic volume fraction values in cryogenic treated and the first, second and third time tempered steel are approximately 59.8%, 69.9%, 70.9% and 71.3%, respectively. Cryogenic treatment moves up martensite transformation from retained austenite, suppresses carbide precipitation in retained austenite, and especially promotes a larger number (about 2.3%) of fine carbides precipitation in martensite. With cryogenic treatment, the hardness of steel increases by 52 HV0.1.