新型炭材料
新型炭材料
신형탄재료
New Carbon Materials
2015年
5期
385-390,378
,共7页
Valeriy V. Bolotov%Vasiliy E. Kan%Egor V. Knyazev%Peter M. Korusenko%Sergey N. Nesov%Yuriy A. Sten`kin%Viktor A. Sachkov%Irina V.Ponomareva
Valeriy V. Bolotov%Vasiliy E. Kan%Egor V. Knyazev%Peter M. Korusenko%Sergey N. Nesov%Yuriy A. Sten`kin%Viktor A. Sachkov%Irina V.Ponomareva
Valeriy V. Bolotov%Vasiliy E. Kan%Egor V. Knyazev%Peter M. Korusenko%Sergey N. Nesov%Yuriy A. Sten`kin%Viktor A. Sachkov%Irina V.Ponomareva
碳纳米管%径向振动模式%拉曼%化学气相沉积%显微镜
碳納米管%徑嚮振動模式%拉曼%化學氣相沉積%顯微鏡
탄납미관%경향진동모식%랍만%화학기상침적%현미경
Carbon nanotube%Radial breathing mode%Raman%Chemical vapor deposition%Microscopy
采用拉曼光谱仪﹑透射电镜﹑俄歇能谱仪﹑X射线光电子能谱仪等研究在SiO2/Si基底上化学沉积的多壁碳纳米管( MWCNTs)经390℃的空气中热处理120 min前后与HCl溶液化学处理前后的结构变化情况. 拉曼光谱集中测试低频(250-300 cm-1 )带. 结果表明,经热处理和化学处理后,在250-300 cm-1形成的拉曼带在峰位和半宽几乎没变. 由透射电镜可知,小直径碳纳米管的内径值与拉曼光谱测试结果一致. 这些结果表明,低频带产生于小直径碳纳米管的内壁中碳原子的径向呼吸振动.
採用拉曼光譜儀﹑透射電鏡﹑俄歇能譜儀﹑X射線光電子能譜儀等研究在SiO2/Si基底上化學沉積的多壁碳納米管( MWCNTs)經390℃的空氣中熱處理120 min前後與HCl溶液化學處理前後的結構變化情況. 拉曼光譜集中測試低頻(250-300 cm-1 )帶. 結果錶明,經熱處理和化學處理後,在250-300 cm-1形成的拉曼帶在峰位和半寬幾乎沒變. 由透射電鏡可知,小直徑碳納米管的內徑值與拉曼光譜測試結果一緻. 這些結果錶明,低頻帶產生于小直徑碳納米管的內壁中碳原子的徑嚮呼吸振動.
채용랍만광보의﹑투사전경﹑아헐능보의﹑X사선광전자능보의등연구재SiO2/Si기저상화학침적적다벽탄납미관( MWCNTs)경390℃적공기중열처리120 min전후여HCl용액화학처리전후적결구변화정황. 랍만광보집중측시저빈(250-300 cm-1 )대. 결과표명,경열처리화화학처리후,재250-300 cm-1형성적랍만대재봉위화반관궤호몰변. 유투사전경가지,소직경탄납미관적내경치여랍만광보측시결과일치. 저사결과표명,저빈대산생우소직경탄납미관적내벽중탄원자적경향호흡진동.
MWCNTs grown by chemical vapor deposition on SiO2/Si substrates were investigated by Raman spectroscopy, trans-mission electron microscopy ( TEM) , Auger spectroscopy, and X-ray photoelectron spectroscopy before and after an annealing at 390 ℃ for 120 min in air or chemical treatment with a HCl solution. The Raman spectroscopy was focused on the low-frequency (250-300 cm-1 ) band. It is found that the positions and full widths at half maximum of the peaks forming the 250-300 cm-1 Raman band change little with the annealing or chemical treatment. The measured inner diameters of small-diameter CNTs from TEM agree well with those from Raman spectroscopy. These indicate that the low-frequency band originates from the radial breathing oscilla-tions of carbon atoms in the inner walls of small-diameter MWCNTs.