测绘学报
測繪學報
측회학보
Acta Geodaetica et Cartographica Sinica
2015年
11期
1255-1262
,共8页
吴诗婳%吴一全%周建江%孟天亮
吳詩婳%吳一全%週建江%孟天亮
오시획%오일전%주건강%맹천량
河流检测%合成孔径雷达图像分割%多阈值选取%倒数灰度熵%人工蜂群优化%Chan-Vese模型
河流檢測%閤成孔徑雷達圖像分割%多閾值選取%倒數灰度熵%人工蜂群優化%Chan-Vese模型
하류검측%합성공경뢰체도상분할%다역치선취%도수회도적%인공봉군우화%Chan-Vese모형
river detection%synthetic aperture radar image segmentation%multi-threshold selection%reciprocal gray entropy%artificial bee colony optimization%Chan-Vese (CV)model
为了进一步提高合成孔径雷达(SAR)图像中河流分割的精度和速度,提出了一种基于人工蜂群优化的倒数灰度熵多阈值选取与改进 Chan-Vese(CV)模型相结合的分割方法。考虑 SAR 图像中河流目标和背景类内灰度的均匀性,提出了基于蜂群优化的倒数灰度熵多阈值选取方法,以此对河流图像进行粗分割;针对基本 CV 模型收敛速度低、对初始条件敏感的问题,利用图像边缘强度取代 Di rac 函数,将粗分割结果作为改进 CV 模型的初始条件,对河流图像进行细分割。大量试验结果表明,所提出的分割方法无须设置初始条件,运行速度快,分割精度高。
為瞭進一步提高閤成孔徑雷達(SAR)圖像中河流分割的精度和速度,提齣瞭一種基于人工蜂群優化的倒數灰度熵多閾值選取與改進 Chan-Vese(CV)模型相結閤的分割方法。攷慮 SAR 圖像中河流目標和揹景類內灰度的均勻性,提齣瞭基于蜂群優化的倒數灰度熵多閾值選取方法,以此對河流圖像進行粗分割;針對基本 CV 模型收斂速度低、對初始條件敏感的問題,利用圖像邊緣彊度取代 Di rac 函數,將粗分割結果作為改進 CV 模型的初始條件,對河流圖像進行細分割。大量試驗結果錶明,所提齣的分割方法無鬚設置初始條件,運行速度快,分割精度高。
위료진일보제고합성공경뢰체(SAR)도상중하류분할적정도화속도,제출료일충기우인공봉군우화적도수회도적다역치선취여개진 Chan-Vese(CV)모형상결합적분할방법。고필 SAR 도상중하류목표화배경류내회도적균균성,제출료기우봉군우화적도수회도적다역치선취방법,이차대하류도상진행조분할;침대기본 CV 모형수렴속도저、대초시조건민감적문제,이용도상변연강도취대 Di rac 함수,장조분할결과작위개진 CV 모형적초시조건,대하류도상진행세분할。대량시험결과표명,소제출적분할방법무수설치초시조건,운행속도쾌,분할정도고。
To further improve the accuracy and speed of river segmentation on synthetic aperture radar (SAR)images,a segmentation method is proposed,which is based on improved Chan-Vese (CV)model combining with reciprocal gray entropy multi-threshold selection optimized by artificial bee colony algorithm.Considering the uniformity of the gray level within river object cluster and background cluster,a coarse river image segmentation is made by using the multi-threshold selection algorithm based on reciprocal gray entropy and artificial bee colony optimization;Contrapose the low convergence speed and the sensitivity to initial conditions of basic CV model,the Di rac function is replaced with the image edge intensity and the coarse segmentation results serve as the initial condition of improved CV model which is uti l ized to make a fine segmentation for the river image.A large number of experimental results show that, the proposed segmentation method needs not set initial conditions and has high running speed as wel l as segmentation accuracy.