东北农业大学学报
東北農業大學學報
동북농업대학학보
Journal of Northeast Agricultural University
2015年
10期
74-79
,共6页
谢秋菊%苏中滨%刘佳荟%郑萍%马铁民%王雪%Tiemin
謝鞦菊%囌中濱%劉佳薈%鄭萍%馬鐵民%王雪%Tiemin
사추국%소중빈%류가회%정평%마철민%왕설%Tiemin
L-M优化算法%BP神经网络%预测模型%猪舍氨气浓度
L-M優化算法%BP神經網絡%預測模型%豬捨氨氣濃度
L-M우화산법%BP신경망락%예측모형%저사안기농도
L-M optimal algorithm%BP neural network%prediction model%piggery ammonia concentra-tion
在规模化养殖中,猪舍环境直接影响猪健康水平及生产能力。针对猪舍环境因素(包括温度、湿度、风速和氨气浓度)进行数据采集,选取具有代表性30 d数据,建立基于L-M优化算法的3-7-1三层结构的BP神经网络模型,对猪舍环氨气浓度进行预测。结果表明,预测模型经过90步达到目标误差,网络收敛速度快,效率高,预测值与实测值最大相对误差仅为1.72%,与线性预测方法相比较可提高猪舍氨气浓度预测的准确性与及时性,为猪舍环境预警及控制提供支持,也为其他行业预测模型建立提供参考。
在規模化養殖中,豬捨環境直接影響豬健康水平及生產能力。針對豬捨環境因素(包括溫度、濕度、風速和氨氣濃度)進行數據採集,選取具有代錶性30 d數據,建立基于L-M優化算法的3-7-1三層結構的BP神經網絡模型,對豬捨環氨氣濃度進行預測。結果錶明,預測模型經過90步達到目標誤差,網絡收斂速度快,效率高,預測值與實測值最大相對誤差僅為1.72%,與線性預測方法相比較可提高豬捨氨氣濃度預測的準確性與及時性,為豬捨環境預警及控製提供支持,也為其他行業預測模型建立提供參攷。
재규모화양식중,저사배경직접영향저건강수평급생산능력。침대저사배경인소(포괄온도、습도、풍속화안기농도)진행수거채집,선취구유대표성30 d수거,건립기우L-M우화산법적3-7-1삼층결구적BP신경망락모형,대저사배안기농도진행예측。결과표명,예측모형경과90보체도목표오차,망락수렴속도쾌,효솔고,예측치여실측치최대상대오차부위1.72%,여선성예측방법상비교가제고저사안기농도예측적준학성여급시성,위저사배경예경급공제제공지지,야위기타행업예측모형건립제공삼고。
In the large-scale farming, piggery environment impacts on the health of swine and production capacity directly. Piggery environmental factors mainly include wind speed, temperature, humidity and ammonia concentration, the representational data during 30 continuous days were selected. The 3-7-1 BP neural network model of the three-layer structure based on L-M optimal algorithm was built to predict the piggery ammonia concentration. It is shown in the experiment that network reaches the target error after 90 steps, the model has the characteristics of fast network convergence and high efficiency, and the biggest relative error between predicted and measured values is only 1.72%, the accuracy and timeliness of the piggery environmental prediction is greatly improved. The prediction model established in the paper can provide support for the piggery environment early warning and control, and also can provide a viable idea for other industries to establish prediction model.