电力系统自动化
電力繫統自動化
전력계통자동화
Automation of Electric Power Systems
2015年
22期
90-97
,共8页
张逸飞%严正%赵文恺%曹路%李建华
張逸飛%嚴正%趙文愷%曹路%李建華
장일비%엄정%조문개%조로%리건화
电力系统%小干扰稳定分析%QR算法%并行计算%图形处理器%分块算法
電力繫統%小榦擾穩定分析%QR算法%併行計算%圖形處理器%分塊算法
전력계통%소간우은정분석%QR산법%병행계산%도형처리기%분괴산법
power system%small-signal stability analysis%QR method%parallel computation%graphic processing unit(GPU)%block algorithm
为了提高电力系统小干扰稳定全部特征值分析的计算速度,研究了 QR 算法中上Hessenberg约化算法的并行化方法。以分块的方式将约化算法中的浮点运算整合为高阶的基础线性代数子程序(BLAS)运算,实现了分块约化算法在中央处理器(CPU)/图形处理器(GPU)混合架构下的并行,并应用到大规模电力系统的小干扰稳定全部特征值分析中。仿真结果表明,相比于多核CPU并行,基于GPU的分块上 Hessenberg 约化算法取得了高达5倍的加速效果。包含所提方法的全部特征值分析的整体计算速度获得了显著的提升,提高了 QR 算法对于大规模电力系统仿真分析的适用性。
為瞭提高電力繫統小榦擾穩定全部特徵值分析的計算速度,研究瞭 QR 算法中上Hessenberg約化算法的併行化方法。以分塊的方式將約化算法中的浮點運算整閤為高階的基礎線性代數子程序(BLAS)運算,實現瞭分塊約化算法在中央處理器(CPU)/圖形處理器(GPU)混閤架構下的併行,併應用到大規模電力繫統的小榦擾穩定全部特徵值分析中。倣真結果錶明,相比于多覈CPU併行,基于GPU的分塊上 Hessenberg 約化算法取得瞭高達5倍的加速效果。包含所提方法的全部特徵值分析的整體計算速度穫得瞭顯著的提升,提高瞭 QR 算法對于大規模電力繫統倣真分析的適用性。
위료제고전력계통소간우은정전부특정치분석적계산속도,연구료 QR 산법중상Hessenberg약화산법적병행화방법。이분괴적방식장약화산법중적부점운산정합위고계적기출선성대수자정서(BLAS)운산,실현료분괴약화산법재중앙처리기(CPU)/도형처리기(GPU)혼합가구하적병행,병응용도대규모전력계통적소간우은정전부특정치분석중。방진결과표명,상비우다핵CPU병행,기우GPU적분괴상 Hessenberg 약화산법취득료고체5배적가속효과。포함소제방법적전부특정치분석적정체계산속도획득료현저적제승,제고료 QR 산법대우대규모전력계통방진분석적괄용성。
To enhance the computational efficiency of complete eigenvalue analysis in power system small-signal stability analysis,the parallelization of upper Hessenberg reduction algorithm in the QR method is studied.A block reduction algorithm is utilized to integrate the floating-point operations into high-level basic linear algebraic subprograms (BLAS).The block reduction algorithm is parallelized on hybrid CPU/GPU (graphic processing unit) system and applied to the complete eigenvalue analysis of large-scale power system small-signal stability analysis.Simulation results show that,compared with multi-core CPU parallelization,the GPU-based block upper Hessenberg reduction algorithm is able to obtain a speed-up ratio up to 5 times the original.The overall computing speed of the complete eigenvalue analysis,including the method proposed, has achieved remarkable acceleration improvement.The applicability of the QR method to large-scale power system simulation analysis is increased.