中国电机工程学报
中國電機工程學報
중국전궤공정학보
Proceedings of the CSEE
2015年
22期
5715-5722
,共8页
包宇庆%李扬%杨斌%陈楚%阮文骏
包宇慶%李颺%楊斌%陳楚%阮文駿
포우경%리양%양빈%진초%원문준
负荷预测%神经网络%日期类型系数%气温累积效应
負荷預測%神經網絡%日期類型繫數%氣溫纍積效應
부하예측%신경망락%일기류형계수%기온루적효응
load forecasting%neural network%weekday index%accumulation effect
对于基于人工神经网络的短期负荷预测来说,日期类型(星期几)是需要考虑的重要影响因素。通常,日期类型系数被编成7位二进制码作为神经网络的输入变量。该文提出一种日期类型系数的确定方法,将日期类型系数编为1位输入变量,由于精简了输入量,从而提高了预测精度。该日期类型系数通过计算不同日期类型的负荷–气温散点图的拟合曲线、并估计不同日期类型的负荷之差得到。为了消除夏季气温累计效应对负荷的影响并得到更清晰的负荷日期特征,
對于基于人工神經網絡的短期負荷預測來說,日期類型(星期幾)是需要攷慮的重要影響因素。通常,日期類型繫數被編成7位二進製碼作為神經網絡的輸入變量。該文提齣一種日期類型繫數的確定方法,將日期類型繫數編為1位輸入變量,由于精簡瞭輸入量,從而提高瞭預測精度。該日期類型繫數通過計算不同日期類型的負荷–氣溫散點圖的擬閤麯線、併估計不同日期類型的負荷之差得到。為瞭消除夏季氣溫纍計效應對負荷的影響併得到更清晰的負荷日期特徵,
대우기우인공신경망락적단기부하예측래설,일기류형(성기궤)시수요고필적중요영향인소。통상,일기류형계수피편성7위이진제마작위신경망락적수입변량。해문제출일충일기류형계수적학정방법,장일기류형계수편위1위수입변량,유우정간료수입량,종이제고료예측정도。해일기류형계수통과계산불동일기류형적부하–기온산점도적의합곡선、병고계불동일기류형적부하지차득도。위료소제하계기온루계효응대부하적영향병득도경청석적부하일기특정,
For the ANN-based short-term load forecasting, the weekday index (day of week) is a very important influencing factor that needs to be considered. Usually, the weekday index is coded as 7 binary inputs. This paper proposed a method that codes the weekday index as only one input variable. Due to the simplicity, the precision of the forecasting was improved. The proposed weekday index is determined by estimating the load’s difference of different day types. For this purpose, the regression curves of load versus temperature of different day types were calculated. To eliminate the accumulation effect and get a clearer weekly pattern of these regression curves, a genetic-algorithm (GA) based method was adopted to modify the temperature variables. The proposed method was demonstrated by the calculated results on the load data of the Suzhou city in China.