中国医疗器械信息
中國醫療器械信息
중국의료기계신식
China Medical Device Information
2015年
11期
12-17
,共6页
压缩感知%超声成像
壓縮感知%超聲成像
압축감지%초성성상
compressed sensing%compressive sampling%ultrasound imaging
在实际应用中,经典的奈奎斯特采样频率通常会造成采样信号数据量过大,不利于存储和传输。数据压缩可以通过对采样信号的进一步处理来降低数据传输的负担,但依然不能降低采样信号的数据量。如何在信号采样的过程即实现数据压缩,以及如何进行后续的信号重建工作是压缩感知(Compressed Sensing或Compressive Sampling, CS)研究的主要内容。压缩感知理论指出,若信号可以稀疏表达,则该信号可以从其少量投影中被大概率重建,大大降低信号的采样频率和数据量。压缩感知一经提出,就引起了相关领域的广泛关注。在医学成像领域,它已经成功应用于磁共振成像来加快信号采集速度。最近,压缩感知也开始应用于医学超声成像。本文综述了压缩感知在医学超声成像领域的研究进展,并对这一应用进行了展望。
在實際應用中,經典的奈奎斯特採樣頻率通常會造成採樣信號數據量過大,不利于存儲和傳輸。數據壓縮可以通過對採樣信號的進一步處理來降低數據傳輸的負擔,但依然不能降低採樣信號的數據量。如何在信號採樣的過程即實現數據壓縮,以及如何進行後續的信號重建工作是壓縮感知(Compressed Sensing或Compressive Sampling, CS)研究的主要內容。壓縮感知理論指齣,若信號可以稀疏錶達,則該信號可以從其少量投影中被大概率重建,大大降低信號的採樣頻率和數據量。壓縮感知一經提齣,就引起瞭相關領域的廣汎關註。在醫學成像領域,它已經成功應用于磁共振成像來加快信號採集速度。最近,壓縮感知也開始應用于醫學超聲成像。本文綜述瞭壓縮感知在醫學超聲成像領域的研究進展,併對這一應用進行瞭展望。
재실제응용중,경전적내규사특채양빈솔통상회조성채양신호수거량과대,불리우존저화전수。수거압축가이통과대채양신호적진일보처리래강저수거전수적부담,단의연불능강저채양신호적수거량。여하재신호채양적과정즉실현수거압축,이급여하진행후속적신호중건공작시압축감지(Compressed Sensing혹Compressive Sampling, CS)연구적주요내용。압축감지이론지출,약신호가이희소표체,칙해신호가이종기소량투영중피대개솔중건,대대강저신호적채양빈솔화수거량。압축감지일경제출,취인기료상관영역적엄범관주。재의학성상영역,타이경성공응용우자공진성상래가쾌신호채집속도。최근,압축감지야개시응용우의학초성성상。본문종술료압축감지재의학초성성상영역적연구진전,병대저일응용진행료전망。
For practical use, the classical Nyquist sampling frequency usual y results in the huge size of sampled signal, which wil hinder data storage and transfer. Data compression can reduce the transfer load, but cannot help to change the size of sampled signal. The objective of compressed sensing or compressive sampling (CS) is to realize the data compression and sampling at the same time and reconstruct the signal afterwards. CS theory indicates that if a signal is sparse or compressible, it can be recovered from its few projections with high probability. This property can help to reduce the sampling frequency and data size. CS has at racted many at entions from the related fields since it was proposed. In the field of medical imaging, it has been applied to magnetic resonance imaging successful y to speed up the acquisition. Recently, CS has also been applied to ultrasound imaging. The purpose of this review is to summarize the progress of CS applications in ultrasound imaging and discuss the difculties and prospects.