中国机械工程
中國機械工程
중국궤계공정
China Mechanical Engineering
2015年
21期
2934-2940
,共7页
杨宇%李紫珠%何知义%程军圣
楊宇%李紫珠%何知義%程軍聖
양우%리자주%하지의%정군골
自适应最稀疏时频分析降噪%AKVPMCD%滚动轴承%故障诊断
自適應最稀疏時頻分析降譟%AKVPMCD%滾動軸承%故障診斷
자괄응최희소시빈분석강조%AKVPMCD%곤동축승%고장진단
adaptive and sparsest time??frequency analysis (ASTFA)de??noising%artificial fish swarm algorithm optimizing fusion Kriging model variable predictive model based class discriminate (AKVPMCD)%rolling bearing%fault diagnosis
提出了一种滚动轴承故障诊断的新方法。首次将自适应最稀疏时频分析(ASTFA)方法应用于振动信号的降噪,并针对 KVPMCD 方法只选择一种最佳相关模型而忽略其他几种相关模型对预测精度贡献的缺陷,提出了一种改进的 KVPMCD 模式识别算法———人工鱼群算法优化融合 Kriging 模型的基于变量预测模型的模式识别(AKVPMCD)算法,即采用收敛速度快、鲁棒性强、具有全局寻优能力的人工鱼群智能算法(AFSIA)优化融合多种 Kriging 相关模型来提高模型预测精度。在此基础上,提出了一种基于 ASTFA 降噪和 AKVPMCD 算法的滚动轴承故障诊断方法。实验结果表明,该方法可以有效提高分类识别的精度。
提齣瞭一種滾動軸承故障診斷的新方法。首次將自適應最稀疏時頻分析(ASTFA)方法應用于振動信號的降譟,併針對 KVPMCD 方法隻選擇一種最佳相關模型而忽略其他幾種相關模型對預測精度貢獻的缺陷,提齣瞭一種改進的 KVPMCD 模式識彆算法———人工魚群算法優化融閤 Kriging 模型的基于變量預測模型的模式識彆(AKVPMCD)算法,即採用收斂速度快、魯棒性彊、具有全跼尋優能力的人工魚群智能算法(AFSIA)優化融閤多種 Kriging 相關模型來提高模型預測精度。在此基礎上,提齣瞭一種基于 ASTFA 降譟和 AKVPMCD 算法的滾動軸承故障診斷方法。實驗結果錶明,該方法可以有效提高分類識彆的精度。
제출료일충곤동축승고장진단적신방법。수차장자괄응최희소시빈분석(ASTFA)방법응용우진동신호적강조,병침대 KVPMCD 방법지선택일충최가상관모형이홀략기타궤충상관모형대예측정도공헌적결함,제출료일충개진적 KVPMCD 모식식별산법———인공어군산법우화융합 Kriging 모형적기우변량예측모형적모식식별(AKVPMCD)산법,즉채용수렴속도쾌、로봉성강、구유전국심우능력적인공어군지능산법(AFSIA)우화융합다충 Kriging 상관모형래제고모형예측정도。재차기출상,제출료일충기우 ASTFA 강조화 AKVPMCD 산법적곤동축승고장진단방법。실험결과표명,해방법가이유효제고분류식별적정도。
A new rolling bearing fault diagnosis method was proposed.ASTFA method was apG plied to the vibration signal de??noising for the first time.Aiming at the defects of KVPMCD(Kriging model variable predictive model based class discriminate)method that was chosen one of the best reG lated model only and the other correlation models’contribution to the prediction accuracy was igG nored,an improved KVPMCD pattern recognition algorithm AKVPMCD was proposed,the AFSIA (artificial fish swarm intelligence algorithm)which had high convergence speed,strong robustness and global optimization ability was used to optimize a variety of Kriging models,so as to improve the prediction precision.On the basis of above,a new fault diagnosis method of rolling bearings was proG posed based on ASTFA de??noising and AKVPMCD.The experimental results prove that this method can improve the precision of classification recognition effectively.