原子能科学技术
原子能科學技術
원자능과학기술
Atomic Energy Science and Technology
2015年
11期
1966-1971
,共6页
程杰%巫英伟%田文喜%秋穗正%苏光辉
程傑%巫英偉%田文喜%鞦穗正%囌光輝
정걸%무영위%전문희%추수정%소광휘
超临界水冷%实验包层模块%热沉积分布%氚增殖率%热工水力
超臨界水冷%實驗包層模塊%熱沉積分佈%氚增殖率%熱工水力
초림계수랭%실험포층모괴%열침적분포%천증식솔%열공수력
supercritical water cooled%test blanket module%heat deposition distribu-tion%tritium breeding ratio%thermal-hydraulics
基于国际热核聚变实验堆(ITER)实验包层方案,提出了一个超临界水冷固态实验包层概念设计方案。设计采用Be作为中子倍增剂,Li4 SiO4作为氚增殖剂,CLAM钢作为结构材料。包层第一壁采用多层盘道设计以提高第一壁出口温度,内部采用增殖剂与中子倍增剂分层布置以提高热沉积与氚增殖率。为验证包层设计的可行性,分析计算了三维包层氚增殖率与热沉积的分布,然后根据中子学计算得到的结果对超临界水冷固态实验包层进行了数值模拟研究。结果表明:包层功率密度分布较合理;氚增殖率满足运行中氚自持的要求;在冷却剂出口温度达到500℃条件下材料温度不超过限值。该设计方案能满足中子学设计与热工水力的要求。
基于國際熱覈聚變實驗堆(ITER)實驗包層方案,提齣瞭一箇超臨界水冷固態實驗包層概唸設計方案。設計採用Be作為中子倍增劑,Li4 SiO4作為氚增殖劑,CLAM鋼作為結構材料。包層第一壁採用多層盤道設計以提高第一壁齣口溫度,內部採用增殖劑與中子倍增劑分層佈置以提高熱沉積與氚增殖率。為驗證包層設計的可行性,分析計算瞭三維包層氚增殖率與熱沉積的分佈,然後根據中子學計算得到的結果對超臨界水冷固態實驗包層進行瞭數值模擬研究。結果錶明:包層功率密度分佈較閤理;氚增殖率滿足運行中氚自持的要求;在冷卻劑齣口溫度達到500℃條件下材料溫度不超過限值。該設計方案能滿足中子學設計與熱工水力的要求。
기우국제열핵취변실험퇴(ITER)실험포층방안,제출료일개초림계수랭고태실험포층개념설계방안。설계채용Be작위중자배증제,Li4 SiO4작위천증식제,CLAM강작위결구재료。포층제일벽채용다층반도설계이제고제일벽출구온도,내부채용증식제여중자배증제분층포치이제고열침적여천증식솔。위험증포층설계적가행성,분석계산료삼유포층천증식솔여열침적적분포,연후근거중자학계산득도적결과대초림계수랭고태실험포층진행료수치모의연구。결과표명:포층공솔밀도분포교합리;천증식솔만족운행중천자지적요구;재냉각제출구온도체도500℃조건하재료온도불초과한치。해설계방안능만족중자학설계여열공수력적요구。
A conceptual supercritical-water cooled solid breeder test blanket module (SWCB-TBM)design was carried out based on the ITER test blanket proj ect.The SWCB-TBM used the beryllium pebbles as neutron multiplier,Li4 SiO4 lithium ceramic pebbles as tritium breeder,CLAM steel as the structure material respectively.For enhancing the outlet temperature,the first wall adopted the design of multi-channel in each circuit to increase temperature of outlet,and arranged the breeder and neutron multiplier by layers to increase heat deposition and tritium breeding ratio (TBR).In order to verify the feasibility of the SWCB-TBM, the distributions of the three-dimensional TBR and thermal deposition were calculated,and the numerical simulation of SWCB-TBM combining with results of neutronics calculation was also carried out. The results show that the power density distribution of the SWCB-TBM is reasonable. The TBR could meet the requirements for tritium self-sufficiency and the SWCB-TBM components are effectively cooled below the allowable temperature while the tempera-ture of outlet reaches 500 ℃.The design of SWCB-TBM in this paper is reasonable under neutronics and thermal-hydraulic conditions.