科学学与科学技术管理
科學學與科學技術管理
과학학여과학기술관리
Science of Science and Management of S.&.T.(Monthly)
2015年
10期
80-88
,共9页
知识基础%知识重组%知识互补性%知识替代性%创新绩效
知識基礎%知識重組%知識互補性%知識替代性%創新績效
지식기출%지식중조%지식호보성%지식체대성%창신적효
knowledge base%knowledge recombination%knowledge complementarity%knowledge substitutability%in-novative performance
知识元素间关系反映着企业利用知识元素的特定方式,是影响其技术创新绩效的重要因素.利用企业专利国际分类号(IPC)构建知识元素共现矩阵,从知识元素间关系角度刻画企业知识基础结构特征,分为知识互补性和知识替代性,并研究其与企业技术创新绩效的关系.以中国汽车产业89家上市公司2000—2013年数据为样本,利用负二项回归模型进行实证分析.结果表明:企业知识互补性与技术创新绩效之间存在显著的倒U型关系,知识替代性与企业技术创新绩效也存在显著的倒U型关系.研究结果对于企业更好理解自身知识基础,提高研发投入—产出效率,增强知识管理能力提供了参考.
知識元素間關繫反映著企業利用知識元素的特定方式,是影響其技術創新績效的重要因素.利用企業專利國際分類號(IPC)構建知識元素共現矩陣,從知識元素間關繫角度刻畫企業知識基礎結構特徵,分為知識互補性和知識替代性,併研究其與企業技術創新績效的關繫.以中國汽車產業89傢上市公司2000—2013年數據為樣本,利用負二項迴歸模型進行實證分析.結果錶明:企業知識互補性與技術創新績效之間存在顯著的倒U型關繫,知識替代性與企業技術創新績效也存在顯著的倒U型關繫.研究結果對于企業更好理解自身知識基礎,提高研髮投入—產齣效率,增彊知識管理能力提供瞭參攷.
지식원소간관계반영착기업이용지식원소적특정방식,시영향기기술창신적효적중요인소.이용기업전리국제분류호(IPC)구건지식원소공현구진,종지식원소간관계각도각화기업지식기출결구특정,분위지식호보성화지식체대성,병연구기여기업기술창신적효적관계.이중국기차산업89가상시공사2000—2013년수거위양본,이용부이항회귀모형진행실증분석.결과표명:기업지식호보성여기술창신적효지간존재현저적도U형관계,지식체대성여기업기술창신적효야존재현저적도U형관계.연구결과대우기업경호리해자신지식기출,제고연발투입—산출효솔,증강지식관리능력제공료삼고.
The relationship between knowledge elements reflects firm's specific methods of using knowledge, and may significantly influence its innovation in the future. Constructing knowledge co-occurrence matrix by using the IPC allocated to the patents to characterize the structure of firm knowledge base from relational perspective, we are able to delineate knowledge complementarity and knowledge substitutability as different relational properties of knowledge elements and examine the relationship between them and corporate innovative performance. Using pa-tent data of 89 listed companies in the automotive industry from 2000 to 2013, we apply negative binomial regres-sion model to conduct our empirical analysis. The results show that both knowledge complementarity and know-ledge substitutability have an inverted U-shaped relationship with firm's innovative performance. The results are of great significance for the companies to better understand their own knowledge base, improve R&D input-output ef-ficiency, and improve their knowledge management capability.