大气科学
大氣科學
대기과학
Chinese Journal of Atmospheric Sciences
2015年
6期
1081-1094
,共14页
东海黑潮锋%春季%气压调整机制%海表面风%年际变化
東海黑潮鋒%春季%氣壓調整機製%海錶麵風%年際變化
동해흑조봉%춘계%기압조정궤제%해표면풍%년제변화
Kuroshio front%East China Sea%Spring%Pressure adjustment mechanism%Sea surface wind%Interannual variability
采用美国国家环境预测中心的 CFSR(Climate Forecast System Reanalysis)再分析资料和 QuickSCAT (Quick Scatterometer)、AVHRR(Advanced Very High Resolution Radiometer)、TRMM(Tropical Rainfall Measuring Mission)高分辨率卫星资料,研究了大气对春季东海黑潮锋响应的气压调整机制及其年际变化。结果表明,春季东海黑潮锋位于黑潮暖舌的西北侧,呈西南—东北走向,与大尺度气压背景场的等压线走向一致,锋区东南侧暖水与西北侧冷水之间产生的局地气压梯度与大尺度气压梯度形成同向叠加,使得锋区附近西北指向东南的气压梯度达到最大,造成该处的海表面10 m矢量风速也最大,在摩擦作用下形成东北偏北风(NNE)。锋区与其东南侧的NNE风之间沿锋区走向(跨锋区走向)的分量差,会在暖舌附近产生气旋性切变涡度(风速辐合),由此产生上升运动和强降水;而在锋区西北侧的冷水区情况正好相反,有反气旋性切变涡度(风速辐散),并伴有下沉运动和弱降水,从而形成跨锋区的次级环流圈。东海黑潮锋区偏强(弱)年,锋区东南侧暖水与西北侧冷水之间的局地气压梯度也偏强(弱),与大尺度气压梯度同向叠加后形成偏强(弱)的NNE风,造成锋区东南侧暖舌附近的气旋性切变涡度、风速辐合、上升运动和降水均偏强(弱),而锋区西北侧冷水区的反气旋性切变涡度、风速辐散和下沉运动均偏强(弱),跨锋区次级环流圈偏强(弱),这表明在年际时间尺度上气压调整机制仍起作用。
採用美國國傢環境預測中心的 CFSR(Climate Forecast System Reanalysis)再分析資料和 QuickSCAT (Quick Scatterometer)、AVHRR(Advanced Very High Resolution Radiometer)、TRMM(Tropical Rainfall Measuring Mission)高分辨率衛星資料,研究瞭大氣對春季東海黑潮鋒響應的氣壓調整機製及其年際變化。結果錶明,春季東海黑潮鋒位于黑潮暖舌的西北側,呈西南—東北走嚮,與大呎度氣壓揹景場的等壓線走嚮一緻,鋒區東南側暖水與西北側冷水之間產生的跼地氣壓梯度與大呎度氣壓梯度形成同嚮疊加,使得鋒區附近西北指嚮東南的氣壓梯度達到最大,造成該處的海錶麵10 m矢量風速也最大,在摩抆作用下形成東北偏北風(NNE)。鋒區與其東南側的NNE風之間沿鋒區走嚮(跨鋒區走嚮)的分量差,會在暖舌附近產生氣鏇性切變渦度(風速輻閤),由此產生上升運動和彊降水;而在鋒區西北側的冷水區情況正好相反,有反氣鏇性切變渦度(風速輻散),併伴有下沉運動和弱降水,從而形成跨鋒區的次級環流圈。東海黑潮鋒區偏彊(弱)年,鋒區東南側暖水與西北側冷水之間的跼地氣壓梯度也偏彊(弱),與大呎度氣壓梯度同嚮疊加後形成偏彊(弱)的NNE風,造成鋒區東南側暖舌附近的氣鏇性切變渦度、風速輻閤、上升運動和降水均偏彊(弱),而鋒區西北側冷水區的反氣鏇性切變渦度、風速輻散和下沉運動均偏彊(弱),跨鋒區次級環流圈偏彊(弱),這錶明在年際時間呎度上氣壓調整機製仍起作用。
채용미국국가배경예측중심적 CFSR(Climate Forecast System Reanalysis)재분석자료화 QuickSCAT (Quick Scatterometer)、AVHRR(Advanced Very High Resolution Radiometer)、TRMM(Tropical Rainfall Measuring Mission)고분변솔위성자료,연구료대기대춘계동해흑조봉향응적기압조정궤제급기년제변화。결과표명,춘계동해흑조봉위우흑조난설적서북측,정서남—동북주향,여대척도기압배경장적등압선주향일치,봉구동남측난수여서북측랭수지간산생적국지기압제도여대척도기압제도형성동향첩가,사득봉구부근서북지향동남적기압제도체도최대,조성해처적해표면10 m시량풍속야최대,재마찰작용하형성동북편북풍(NNE)。봉구여기동남측적NNE풍지간연봉구주향(과봉구주향)적분량차,회재난설부근산생기선성절변와도(풍속복합),유차산생상승운동화강강수;이재봉구서북측적랭수구정황정호상반,유반기선성절변와도(풍속복산),병반유하침운동화약강수,종이형성과봉구적차급배류권。동해흑조봉구편강(약)년,봉구동남측난수여서북측랭수지간적국지기압제도야편강(약),여대척도기압제도동향첩가후형성편강(약)적NNE풍,조성봉구동남측난설부근적기선성절변와도、풍속복합、상승운동화강수균편강(약),이봉구서북측랭수구적반기선성절변와도、풍속복산화하침운동균편강(약),과봉구차급배류권편강(약),저표명재년제시간척도상기압조정궤제잉기작용。
By using Quick Scatterometer (QuickSCAT), Advanced Very High Resolution Radiometer (AVHRR) and Tropical Rainfall Measuring Mission (TRMM) high-resolution satellite data and Climate Forecast System Reanalysis (CFSR) reanalysis data, the pressure adjustment mechanism in the atmospheric response to the spring Kuroshio front (KF) in the East China Sea is investigated along with its interannual variability. Results show that the spring KF lies to the northwest of the Kuroshio warm tongue with a southwest–northeast orientation, which is parallel to the isobars of large-scale background sea level pressure (SLP). The local SLP gradient between the warm water in the southeast of the KF (SE-KF) and the cold water in the northwest of the KF (NW-KF) will superimpose on the large-scale SLP background gradient, causing the resultant northwest-to-southeast SLP gradient to reach its maximum near the KF, and the 10 m vector wind speed thus being strongest there. Due to the friction factor, such a vector wind will be a north-northeast (NNE) wind. The difference in the component of the NNE wind along (across) the KF will produce cyclonic shear vorticity (convergence in wind speed) over the SE-KF, thereby forming ascending motion and enhanced precipitation. In contrast, over the NW-KF, there is anticyclonic shear vorticity (divergence in wind speed) along (across) the KF and descending motion and weak rainfall. A secondary circulation across the KF is thereby induced. On the interannual timescale, a stronger (weaker) spring KF corresponds to a stronger (weaker) local SLP gradient between the NW-and SE-KF. The stronger (weaker) local SLP gradient, superimposed on the large-scale SLP background gradient, will produce stronger (weaker) NNE wind, thus making cyclonic shear vorticity, convergence in wind speed, ascending motion and precipitation all stronger (weaker) over the SE-KF, and making anticyclonic shear vorticity, divergence in wind speed, and descending motion all stronger (weaker) over the NW-KF, ultimately leading to stronger (weaker) secondary circulation across the KF. This indicates that the pressure adjustment mechanism still exists on the interannual timescale.