计算机工程与应用
計算機工程與應用
계산궤공정여응용
Computer Engineering and Applications
2015年
22期
38-41
,共4页
任聪%葛洪伟%杨金龙%袁运浩
任聰%葛洪偉%楊金龍%袁運浩
임총%갈홍위%양금룡%원운호
粒子群算法%人工蜂群%蛙跳算法
粒子群算法%人工蜂群%蛙跳算法
입자군산법%인공봉군%와도산법
Particle Swarm Optimization(PSO)%artificial bee colony optimization%shuffled frog leaping algorithm
由于标准粒子群算法易于陷入局部最优和收敛速度慢等问题,提出了一种引入人工蜂群搜索策略和混合蛙跳搜索策略的粒子群算法(ABCSFL-PSO)。使用人工蜂群的搜索策略提高算法的探索能力,避免算法陷入局部最优;使用蛙跳算法中更新最差粒子的策略,来加快算法收敛速度,并进一步提高求解精度。在12个标准测试函数上的仿真实验结果表明,算法性能优良,不仅能够避免陷入局部最优,而且显著提升了收敛速度。
由于標準粒子群算法易于陷入跼部最優和收斂速度慢等問題,提齣瞭一種引入人工蜂群搜索策略和混閤蛙跳搜索策略的粒子群算法(ABCSFL-PSO)。使用人工蜂群的搜索策略提高算法的探索能力,避免算法陷入跼部最優;使用蛙跳算法中更新最差粒子的策略,來加快算法收斂速度,併進一步提高求解精度。在12箇標準測試函數上的倣真實驗結果錶明,算法性能優良,不僅能夠避免陷入跼部最優,而且顯著提升瞭收斂速度。
유우표준입자군산법역우함입국부최우화수렴속도만등문제,제출료일충인입인공봉군수색책략화혼합와도수색책략적입자군산법(ABCSFL-PSO)。사용인공봉군적수색책략제고산법적탐색능력,피면산법함입국부최우;사용와도산법중경신최차입자적책략,래가쾌산법수렴속도,병진일보제고구해정도。재12개표준측시함수상적방진실험결과표명,산법성능우량,불부능구피면함입국부최우,이차현저제승료수렴속도。
Since the standard Particle Swarm Optimization(PSO)algorithm is easy to fall into local optimum and converges slowly, a novel particle swarm optimization algorithm combined with the search operator of artificial bee colony algorithm and that of shuffled frog leaping algorithm is proposed. Firstly, use the search operator of artificial bee colony algorithm to improve the ability of explore to avoid falling into local optimum;Secondly, introduce the update operator of shuffled frog leaping algorithm into PSO to enhance the accuracy of convergence. Through the twelve standard test functions simu-lation experiments and compared with other algorithms, experiment results show that the proposed algorithm can avoid falling into local optimization and significantly improve convergence speed.