表面技术
錶麵技術
표면기술
Surface Technology
2015年
11期
128-133
,共6页
乔永莲%沙春鹏%董宇%刘冰
喬永蓮%沙春鵬%董宇%劉冰
교영련%사춘붕%동우%류빙
槽液组成%电化学测量%自动化%在线监测%PLC技术
槽液組成%電化學測量%自動化%在線鑑測%PLC技術
조액조성%전화학측량%자동화%재선감측%PLC기술
bath composition%electrochemical measurement%automation%on-line monitoring%PLC
目的 研发一种能够在线监测镀镍槽液中镍离子含量的测试系统,并将此方法推广至镀铬、镉、铜等槽液. 方法 利用计算机VC++语言编程技术、Modbus通讯技术、西门子PLC技术组成监控系统,通过耐酸碱计量泵和耐酸碱流量计对镀镍槽液取液量进行控制和校正,采用电化学测试方法对待测槽液在线监测,采用VC++语言编程技术采集电化学测试数据,最终实现对镀镍槽液中镍离子含量的自动监测.结果 采用此自动控制系统测量镀镍槽液中镍离子的质量浓度,其与极化曲线中-1. 0 V( vs. SCE)电位下的极化电流之间的线性拟合方程为:I=0 . 002 01+6 . 90 × 10-5ρ. 以120 g/L待测溶液为分析对象,采用此自动检测系统测得镀镍液中Ni2+质量浓度为115. 5 g/L,而采用EDTA直接滴定分析测得Ni2+质量浓度为113. 7 g/L,测量误差分别为3. 78%和5. 25%. 结论 该镀镍槽液中镍离子含量的在线监测方法可靠性高,除了对镀镍槽液状态进行监控分析外,还能对镀铬槽液、镀镉槽液等进行监控分析,可适应较恶劣的生产环境.
目的 研髮一種能夠在線鑑測鍍鎳槽液中鎳離子含量的測試繫統,併將此方法推廣至鍍鉻、鎘、銅等槽液. 方法 利用計算機VC++語言編程技術、Modbus通訊技術、西門子PLC技術組成鑑控繫統,通過耐痠堿計量泵和耐痠堿流量計對鍍鎳槽液取液量進行控製和校正,採用電化學測試方法對待測槽液在線鑑測,採用VC++語言編程技術採集電化學測試數據,最終實現對鍍鎳槽液中鎳離子含量的自動鑑測.結果 採用此自動控製繫統測量鍍鎳槽液中鎳離子的質量濃度,其與極化麯線中-1. 0 V( vs. SCE)電位下的極化電流之間的線性擬閤方程為:I=0 . 002 01+6 . 90 × 10-5ρ. 以120 g/L待測溶液為分析對象,採用此自動檢測繫統測得鍍鎳液中Ni2+質量濃度為115. 5 g/L,而採用EDTA直接滴定分析測得Ni2+質量濃度為113. 7 g/L,測量誤差分彆為3. 78%和5. 25%. 結論 該鍍鎳槽液中鎳離子含量的在線鑑測方法可靠性高,除瞭對鍍鎳槽液狀態進行鑑控分析外,還能對鍍鉻槽液、鍍鎘槽液等進行鑑控分析,可適應較噁劣的生產環境.
목적 연발일충능구재선감측도얼조액중얼리자함량적측시계통,병장차방법추엄지도락、력、동등조액. 방법 이용계산궤VC++어언편정기술、Modbus통신기술、서문자PLC기술조성감공계통,통과내산감계량빙화내산감류량계대도얼조액취액량진행공제화교정,채용전화학측시방법대대측조액재선감측,채용VC++어언편정기술채집전화학측시수거,최종실현대도얼조액중얼리자함량적자동감측.결과 채용차자동공제계통측량도얼조액중얼리자적질량농도,기여겁화곡선중-1. 0 V( vs. SCE)전위하적겁화전류지간적선성의합방정위:I=0 . 002 01+6 . 90 × 10-5ρ. 이120 g/L대측용액위분석대상,채용차자동검측계통측득도얼액중Ni2+질량농도위115. 5 g/L,이채용EDTA직접적정분석측득Ni2+질량농도위113. 7 g/L,측량오차분별위3. 78%화5. 25%. 결론 해도얼조액중얼리자함량적재선감측방법가고성고,제료대도얼조액상태진행감공분석외,환능대도락조액、도력조액등진행감공분석,가괄응교악렬적생산배경.
Objective To develop a new method for on-line monitoring of the concentration of nickel ions in nickel plating, and to expand its application to chromeplate, cadmium plating, copper plating and so on. Methods The system was composed by VC++Language programming, Modbus communication technology and PLC Siemens technology. The amount of nickel plating bath was controlled and revised by meter pump and flowmeter for nickel ion monitoring. The bath solution was automatically monitored by electrochemical testing method and then the results were collected by VC++Language programming. Thus, the composition of nick-el plating bath can be automatically monitored by this excellent and reliable method. Results The relationship between the nickel ions and the polarization current value at-1. 0 V(vs. SCE)was fitted as I=0. 002 01+6. 90×10-5ρby the system of on-line monito- ring of nickel ion concentration. For 120 g/L nickel plating solution, the concentration of the nickel ions was detected as 115. 5 g/L and 113. 7 g/L and the measuring error was 3. 78% and 5. 25% by this on-line monitoring and the EDTA titrimetric analysis, re-spectively. Conclusion With its high reliability, the system can not only be used to monitor the status of nickel plating bath, but also for the cadmium plating bath and the chromium plating bath. Most importantly, it can be used in harsh environment.