广东工业大学学报
廣東工業大學學報
엄동공업대학학보
Journal of Guangdong University of Technology
2015年
4期
150-154
,共5页
词包模型%视觉单词%视觉字典%隐狄利克雷分配模型
詞包模型%視覺單詞%視覺字典%隱狄利剋雷分配模型
사포모형%시각단사%시각자전%은적리극뢰분배모형
bag of words%visual words%visual dictionary%LDA model
提出了一种高效获取词包模型中视觉字典容量的方法,并研究了该方法与隐狄利克雷分配模型( Latent Dirichlet Allocation,LDA )相结合情况下的场景分类性能.在用SIFT特征构建场景图像数据集特征矩阵的基础上,首先采用吸引子传播方法获取场景图像集特征矩阵的合理聚类数目族,并将其中的最小聚类数目作为视觉字典容量,进而生成视觉字典;然后利用所构建视觉字典中的单词描述场景图像训练集和测试集;最后采用LDA模型对场景图像测试集进行场景分类实验.实验结果表明,提出的方法不仅保持了较高场景分类准确率,同时显著提高了场景分类的效率.
提齣瞭一種高效穫取詞包模型中視覺字典容量的方法,併研究瞭該方法與隱狄利剋雷分配模型( Latent Dirichlet Allocation,LDA )相結閤情況下的場景分類性能.在用SIFT特徵構建場景圖像數據集特徵矩陣的基礎上,首先採用吸引子傳播方法穫取場景圖像集特徵矩陣的閤理聚類數目族,併將其中的最小聚類數目作為視覺字典容量,進而生成視覺字典;然後利用所構建視覺字典中的單詞描述場景圖像訓練集和測試集;最後採用LDA模型對場景圖像測試集進行場景分類實驗.實驗結果錶明,提齣的方法不僅保持瞭較高場景分類準確率,同時顯著提高瞭場景分類的效率.
제출료일충고효획취사포모형중시각자전용량적방법,병연구료해방법여은적리극뢰분배모형( Latent Dirichlet Allocation,LDA )상결합정황하적장경분류성능.재용SIFT특정구건장경도상수거집특정구진적기출상,수선채용흡인자전파방법획취장경도상집특정구진적합리취류수목족,병장기중적최소취류수목작위시각자전용량,진이생성시각자전;연후이용소구건시각자전중적단사묘술장경도상훈련집화측시집;최후채용LDA모형대장경도상측시집진행장경분류실험.실험결과표명,제출적방법불부보지료교고장경분류준학솔,동시현저제고료장경분류적효솔.
An approach is proposed to obtain the dictionary capacity of bag of words ( BoW ) model effi-ciently,which is combined with The Latent Dirichlet Allocation (LDA) model to analyze the performance of scene category.Based on the feature matrix of scene image data sets constructed by SIFT feature,the affinity propagation method is firstly employed to obtain the clustering numbers,and to take the minimal clustering number as the visual dictionary capacity before generating a visual dictionary.Secondly,the scene training and testing sets are described by these visual words.Finally,the LDA model is employed to classify the testing data set.The experiments show that the proposed approach in this paper maintains higher accuracy of scene classification and can improve efficiency greatly.