表面技术
錶麵技術
표면기술
Surface Technology
2015年
11期
91-96,103
,共7页
刘小菊%王腾%李偲偲%李强
劉小菊%王騰%李偲偲%李彊
류소국%왕등%리시시%리강
APS%热障涂层%等温氧化%热生长氧化物%生长动力学%微观结构
APS%熱障塗層%等溫氧化%熱生長氧化物%生長動力學%微觀結構
APS%열장도층%등온양화%열생장양화물%생장동역학%미관결구
APS%TBCs%isothermal oxidation%TGO%growth kinetics%microstructure
目的 研究热障涂层( TBC)和纯粘结层( BC)在1100 ℃下的氧化动力学,探讨热障涂层中热生长氧化物( TGO)组织结构的演化规律. 方法 运用大气等离子喷涂技术( APS)制备涂层,对比分析热障涂层和纯粘结层涂层在1100 ℃下等温氧化2 ,5 ,10 ,20 ,50 ,100 ,200 ,350 h后TGO的厚度变化,并对粘结层表面和热障涂层截面分别进行XRD和SEM分析. 结果 热障涂层和纯粘结层在1100 ℃下的氧化动力学均遵循抛物线规律,其氧化速率常数分别为0. 344,0. 354 μm/h0. 5. 等温氧化5 h后,TGO的主要成分为α-Al2 O3;随氧化时间的增加,生成Cr2 O3、尖晶石、CoO和NiO的混合氧化物;等温氧化100 h后,CoO消失,NiO的含量减少,Cr2 O3 和尖晶石氧化物的含量增加;等温氧化350 h后,TGO中出现了裂纹,但涂层仍未剥落,TGO最终由顶层多孔的混合氧化物层和底层具有柱状晶结构的α-Al2 O3 层组成. 结论 顶层陶瓷层( TC)对热障涂层氧化速率常数的影响很小. TGO中α-Al2 O3 首先形成并以柱状结晶的方式生长,混合氧化物在α-Al2 O3 上形成,TGO生长速度逐渐变缓.
目的 研究熱障塗層( TBC)和純粘結層( BC)在1100 ℃下的氧化動力學,探討熱障塗層中熱生長氧化物( TGO)組織結構的縯化規律. 方法 運用大氣等離子噴塗技術( APS)製備塗層,對比分析熱障塗層和純粘結層塗層在1100 ℃下等溫氧化2 ,5 ,10 ,20 ,50 ,100 ,200 ,350 h後TGO的厚度變化,併對粘結層錶麵和熱障塗層截麵分彆進行XRD和SEM分析. 結果 熱障塗層和純粘結層在1100 ℃下的氧化動力學均遵循拋物線規律,其氧化速率常數分彆為0. 344,0. 354 μm/h0. 5. 等溫氧化5 h後,TGO的主要成分為α-Al2 O3;隨氧化時間的增加,生成Cr2 O3、尖晶石、CoO和NiO的混閤氧化物;等溫氧化100 h後,CoO消失,NiO的含量減少,Cr2 O3 和尖晶石氧化物的含量增加;等溫氧化350 h後,TGO中齣現瞭裂紋,但塗層仍未剝落,TGO最終由頂層多孔的混閤氧化物層和底層具有柱狀晶結構的α-Al2 O3 層組成. 結論 頂層陶瓷層( TC)對熱障塗層氧化速率常數的影響很小. TGO中α-Al2 O3 首先形成併以柱狀結晶的方式生長,混閤氧化物在α-Al2 O3 上形成,TGO生長速度逐漸變緩.
목적 연구열장도층( TBC)화순점결층( BC)재1100 ℃하적양화동역학,탐토열장도층중열생장양화물( TGO)조직결구적연화규률. 방법 운용대기등리자분도기술( APS)제비도층,대비분석열장도층화순점결층도층재1100 ℃하등온양화2 ,5 ,10 ,20 ,50 ,100 ,200 ,350 h후TGO적후도변화,병대점결층표면화열장도층절면분별진행XRD화SEM분석. 결과 열장도층화순점결층재1100 ℃하적양화동역학균준순포물선규률,기양화속솔상수분별위0. 344,0. 354 μm/h0. 5. 등온양화5 h후,TGO적주요성분위α-Al2 O3;수양화시간적증가,생성Cr2 O3、첨정석、CoO화NiO적혼합양화물;등온양화100 h후,CoO소실,NiO적함량감소,Cr2 O3 화첨정석양화물적함량증가;등온양화350 h후,TGO중출현료렬문,단도층잉미박락,TGO최종유정층다공적혼합양화물층화저층구유주상정결구적α-Al2 O3 층조성. 결론 정층도자층( TC)대열장도층양화속솔상수적영향흔소. TGO중α-Al2 O3 수선형성병이주상결정적방식생장,혼합양화물재α-Al2 O3 상형성,TGO생장속도축점변완.
Objective To investigate growth kinetics of TBCs and pure BC as well as microstructure evolution of TGO in TBCs. Methods Variations in TGO thickness of APS-TBCs and pure BCs after isothermal oxidation at 1100 ℃ for 2,5,10,20,50,100, 200,350 h were comparatively analyzed. XRD and SEM were used to characterize the surface and cross-section of TBCs. Results TGO growth kinetics for both samples followed parabolic laws, and the oxidation rate constants of TBCs and pure BC were 0. 344μm/h0. 5 and 0. 354 μm/h0. 5 , respectively. TGO mainly consisted ofα-Al2 O3 after isothermal oxidation for 5 h. CoO, NiO, Cr2 O3 and spinel oxides appeared with the increase of oxidation time. CoO disappeared, and content of NiO reduced while contents of Cr2 O3 and spinel oxides increased after isothermal oxidation for 100 h. Cracks appeared but failure of TBCs did not occur after iso-thermal oxidation at 1100 ℃ for 350 h. TGO eventually consisted of a sub-Al2 O3 layer with columnar microstructure and the upper porous mixture. Conclusion TCs had little effect on the oxidation rate constant of BCs. α-Al2 O3 was firstly formed in TGO and grew in form of columnar crystals, then mixed oxides appeared on α-Al2 O3 and the growth rate of TGO became slow.