表面技术
錶麵技術
표면기술
Surface Technology
2015年
11期
59-65,86
,共8页
潘延安%付秀丽%安增辉%谢安冉
潘延安%付秀麗%安增輝%謝安冉
반연안%부수려%안증휘%사안염
切削表面%梯度纳米结构%晶粒细化%应变%应变率%塑性变形%服役性能
切削錶麵%梯度納米結構%晶粒細化%應變%應變率%塑性變形%服役性能
절삭표면%제도납미결구%정립세화%응변%응변솔%소성변형%복역성능
cutting surface%gradient nanostructure%grain refinement%strain%strain rate%plastic deformation%service per-formance
在工件表面覆盖一层梯度纳米结构提高其硬度、抗疲劳强度、抗腐蚀强度等服役性能,已成为一种重要的表面强化技术. 塑性变形是表面梯度纳米结构形成的一种有效途径,而切削加工作为一种典型的塑性变形过程(应变可达13,应变率可达106 s-1 )满足了这一要求. 对国内外相关研究成果进行梳理,从切削加工制备梯度纳米结构的理论基础入手,通过阐明塑性变形-应变、应变率-位错等之间的关系,描述切削过程中切削表面与切屑的微观组织演变,并结合有限元仿真分析和切削加工实验对切削加工过程中制备梯度纳米结构的可行性进行分析. 具体阐述了切削制备技术的特点与优势,如缩短工件生产周期,降低生产成本,提高加工效率,拓展加工范围等;提出切削制备梯度纳米结构所面临的一些基础性难题,例如,晶粒细化机理和微观组织演变过程存在争议,切削过程中切削热引起再结晶问题,形成的梯度纳米结构难以达到服役要求等. 最后,对切削制备技术发展过程中所要突破的关键技术及未来应用前景进行了展望.
在工件錶麵覆蓋一層梯度納米結構提高其硬度、抗疲勞彊度、抗腐蝕彊度等服役性能,已成為一種重要的錶麵彊化技術. 塑性變形是錶麵梯度納米結構形成的一種有效途徑,而切削加工作為一種典型的塑性變形過程(應變可達13,應變率可達106 s-1 )滿足瞭這一要求. 對國內外相關研究成果進行梳理,從切削加工製備梯度納米結構的理論基礎入手,通過闡明塑性變形-應變、應變率-位錯等之間的關繫,描述切削過程中切削錶麵與切屑的微觀組織縯變,併結閤有限元倣真分析和切削加工實驗對切削加工過程中製備梯度納米結構的可行性進行分析. 具體闡述瞭切削製備技術的特點與優勢,如縮短工件生產週期,降低生產成本,提高加工效率,拓展加工範圍等;提齣切削製備梯度納米結構所麵臨的一些基礎性難題,例如,晶粒細化機理和微觀組織縯變過程存在爭議,切削過程中切削熱引起再結晶問題,形成的梯度納米結構難以達到服役要求等. 最後,對切削製備技術髮展過程中所要突破的關鍵技術及未來應用前景進行瞭展望.
재공건표면복개일층제도납미결구제고기경도、항피로강도、항부식강도등복역성능,이성위일충중요적표면강화기술. 소성변형시표면제도납미결구형성적일충유효도경,이절삭가공작위일충전형적소성변형과정(응변가체13,응변솔가체106 s-1 )만족료저일요구. 대국내외상관연구성과진행소리,종절삭가공제비제도납미결구적이론기출입수,통과천명소성변형-응변、응변솔-위착등지간적관계,묘술절삭과정중절삭표면여절설적미관조직연변,병결합유한원방진분석화절삭가공실험대절삭가공과정중제비제도납미결구적가행성진행분석. 구체천술료절삭제비기술적특점여우세,여축단공건생산주기,강저생산성본,제고가공효솔,탁전가공범위등;제출절삭제비제도납미결구소면림적일사기출성난제,례여,정립세화궤리화미관조직연변과정존재쟁의,절삭과정중절삭열인기재결정문제,형성적제도납미결구난이체도복역요구등. 최후,대절삭제비기술발전과정중소요돌파적관건기술급미래응용전경진행료전망.
The hardness, fatigue strength and corrosion strength, etc. of workpiece can be significantly increased by covering a layer of gradient nanostructure, which has become one of the important surface strengthening technologies. Plastic deformation is an effective way to form the surface gradient nanostructures, while cutting is a typical plastic deformation process (strain can reach 13, with a strain rate of up to 106 s-1 ) meeting this requirement. In this paper, based on the theory of cutting fabrication of gradient nanostructures, the relevant research results were combed by clarifying the relationships between plastic deformation-strain, strain rate-dislocation, and so on, and the microstructure evolution of the cutting surface and cuttings during the cutting process was de- scribed. Besides, finite element simulation and cutting experiments were combined to analyze the feasibility of cutting machining process for preparing gradient nanostructures. Then the technical features and advantages of cutting preparation techniques were specifically addressed, such as greatly shortened production cycle of the workpiece, reduced production costs, improved processing efficiency, expanded processing range. Some basic problems faced by cutting machining process for preparation of gradient nano-structures were proposed, for example, controversy in the grain refinement mechanism and microstructure evolution, recrystalliza-tion caused by cutting heat, difficulty in meeting service requirements of the formed gradient nanostructures. Finally, the key tech-nology and future prospects of fabrication technology by cutting fabrication were forecasted.