表面技术
錶麵技術
표면기술
Surface Technology
2015年
11期
35-39,51
,共6页
常季%陈吉%崔霄%孙彦伟
常季%陳吉%崔霄%孫彥偉
상계%진길%최소%손언위
脉冲电沉积%WC-Co-Ni镀层%形核%显微硬度%脉冲参数%腐蚀速率
脈遲電沉積%WC-Co-Ni鍍層%形覈%顯微硬度%脈遲參數%腐蝕速率
맥충전침적%WC-Co-Ni도층%형핵%현미경도%맥충삼수%부식속솔
pulse electrodeposition%WC-Co-Ni coating%nucleation%microhardness%pulse parameters%corrosion rate
目的 提高WC-Co-Ni纳米晶复合镀层的综合性能. 方法 利用脉冲电沉积法制备WC-Co-Ni纳米晶复合镀层,分析镀层的结构、表面形貌及元素成分,测试镀层的显微硬度. 对WC-Co-Ni纳米晶复合镀层和304不锈钢进行5%(质量分数) H2 SO4 溶液浸泡实验,计算腐蚀速率,对比其耐蚀性. 结果 当脉冲参数为阴极电流密度5 A/dm2、脉冲占空比50%、脉冲频率2000 Hz时,施镀2 h制备的WC-Co-Ni复合镀层为纳米晶结构. 镀层表面平整、光亮,无裂纹,由立方晶型的Ni、六方结构的WC和立方晶型的Co组成,WC-Co颗粒均匀弥散在纳米晶Ni镀层内,且m( Ni) : m( W) : m( C) : m( Co)=6 : 2 : 1 : 1. WC-Co纳米颗粒起到了促进形核的作用,晶粒尺寸大多分布在20 nm左右. WC-Co纳米颗粒对镀层起到了弥散强化作用,使复合镀层的显微硬度达到600 HV. 在浸泡腐蚀实验中,随着温度从20 ℃升高至80 ℃,复合镀层的腐蚀速率增加缓慢,20 ℃下的腐蚀速率仅为0. 4192 mm/a,80 ℃下的腐蚀速率也低于20 mm/a.结论 脉冲电沉积法制备的WC-Co-Ni纳米晶复合镀层硬度高于传统的不锈钢材料,耐蚀性也优于304不锈钢,综合性能较好.
目的 提高WC-Co-Ni納米晶複閤鍍層的綜閤性能. 方法 利用脈遲電沉積法製備WC-Co-Ni納米晶複閤鍍層,分析鍍層的結構、錶麵形貌及元素成分,測試鍍層的顯微硬度. 對WC-Co-Ni納米晶複閤鍍層和304不鏽鋼進行5%(質量分數) H2 SO4 溶液浸泡實驗,計算腐蝕速率,對比其耐蝕性. 結果 噹脈遲參數為陰極電流密度5 A/dm2、脈遲佔空比50%、脈遲頻率2000 Hz時,施鍍2 h製備的WC-Co-Ni複閤鍍層為納米晶結構. 鍍層錶麵平整、光亮,無裂紋,由立方晶型的Ni、六方結構的WC和立方晶型的Co組成,WC-Co顆粒均勻瀰散在納米晶Ni鍍層內,且m( Ni) : m( W) : m( C) : m( Co)=6 : 2 : 1 : 1. WC-Co納米顆粒起到瞭促進形覈的作用,晶粒呎吋大多分佈在20 nm左右. WC-Co納米顆粒對鍍層起到瞭瀰散彊化作用,使複閤鍍層的顯微硬度達到600 HV. 在浸泡腐蝕實驗中,隨著溫度從20 ℃升高至80 ℃,複閤鍍層的腐蝕速率增加緩慢,20 ℃下的腐蝕速率僅為0. 4192 mm/a,80 ℃下的腐蝕速率也低于20 mm/a.結論 脈遲電沉積法製備的WC-Co-Ni納米晶複閤鍍層硬度高于傳統的不鏽鋼材料,耐蝕性也優于304不鏽鋼,綜閤性能較好.
목적 제고WC-Co-Ni납미정복합도층적종합성능. 방법 이용맥충전침적법제비WC-Co-Ni납미정복합도층,분석도층적결구、표면형모급원소성분,측시도층적현미경도. 대WC-Co-Ni납미정복합도층화304불수강진행5%(질량분수) H2 SO4 용액침포실험,계산부식속솔,대비기내식성. 결과 당맥충삼수위음겁전류밀도5 A/dm2、맥충점공비50%、맥충빈솔2000 Hz시,시도2 h제비적WC-Co-Ni복합도층위납미정결구. 도층표면평정、광량,무렬문,유립방정형적Ni、륙방결구적WC화립방정형적Co조성,WC-Co과립균균미산재납미정Ni도층내,차m( Ni) : m( W) : m( C) : m( Co)=6 : 2 : 1 : 1. WC-Co납미과립기도료촉진형핵적작용,정립척촌대다분포재20 nm좌우. WC-Co납미과립대도층기도료미산강화작용,사복합도층적현미경도체도600 HV. 재침포부식실험중,수착온도종20 ℃승고지80 ℃,복합도층적부식속솔증가완만,20 ℃하적부식속솔부위0. 4192 mm/a,80 ℃하적부식속솔야저우20 mm/a.결론 맥충전침적법제비적WC-Co-Ni납미정복합도층경도고우전통적불수강재료,내식성야우우304불수강,종합성능교호.
Objective To improve the comprehensive performance of WC-Co-Ni nanocrystalline composite coatings. Methods WC-Co-Ni nanocrystalline composite coatings were prepared by pulse electrodeposition, the structure, the surface morphology and the elemental composition were analyzed, microhardness of the composite coatings was tested. The 304 stainless steel and the com- posite coatings were immersed in H2 SO4 solution of the mass fraction of 5%, the corrosion rate was calculated and their corrosion resistances were compared. Results It was showed that when the pulse parameters were the follows, i. e. , 5 A/dm2 cathodic cur-rent density, pulse duty ratio 50%, the pulse frequency of 2000 Hz and the plating time 2 hours, the prepared WC-Co-Ni compos-ite coating formed a nanocrystalline structure. At these parameters, the coating, composed by cubic crystal Ni, hexagonal WC and cubic crystal Co, was smooth and bright without cracks. The WC-Co particles uniformly diffused in the Ni nanocrystalline coating layer and m(Ni) : m(W) : m(C) : m(Co)=6 : 2 : 1 : 1. WC-Co nanoparticles played an important role to promote nucleation and the grain size was mostly about 20 nm. WC-Co nanoparticles had a strengthening effect on the coating dispersion, making the microhardness of the composite coating reach to 600HV. The immersion test showed that the corrosion rate of the composite coating increased slowly when the temperature raised from 20℃ to 80℃, and the corrosion rate was only 0. 4192 mm/a at 20℃ and less than 20 mm/a at 80 ℃. Conclusion The hardness, corrosion resistance and comprehensive performance of the WC-Co-Ni nano-crystalline composite coatings are superior to the traditional 304 stainless steel.