表面技术
錶麵技術
표면기술
Surface Technology
2015年
11期
7-13
,共7页
邢学刚%杨耀军%卢盼娜%韩志军
邢學剛%楊耀軍%盧盼娜%韓誌軍
형학강%양요군%로반나%한지군
304不锈钢%双层涂层%稀土元素%电化学腐蚀%固体包埋法
304不鏽鋼%雙層塗層%稀土元素%電化學腐蝕%固體包埋法
304불수강%쌍층도층%희토원소%전화학부식%고체포매법
304 stainless steel%duplex coatings%rare earth element%electrochemical corrosion resistance%pack cementation
目的 选择合适的稀土制备Ti/Cr-RE双层涂层,提高不锈钢的耐腐蚀性能. 方法 采用两步粉末包埋法,先在304不锈钢表面渗Ti,再制备稀土改性Cr涂层,获得Ti/Cr-RE双层涂层. 通过添加不同的稀土氧化物Y2 O3 和CeO2 ,获得两种双层涂层,对比分析涂层的表面形貌、断面形貌及物相组成,利用电化学测试方法测定304不锈钢基体及两种Ti/Cr-RE双层涂层在3 . 5%(质量分数) NaCl溶液中的电化学腐蚀性能. 结果 添加不同稀土元素钇、铈,都能在渗Ti不锈钢表面形成一层致密、连续的稀土改性渗铬层. 在两种稀土元素改性的Cr涂层中,稀土元素分别与Cr,Fe,Ni,Ti形成了金属间化合物. 304不锈钢基体的自腐蚀电位为-0. 324 V,腐蚀电流密度为0. 1363 μA/cm2;钇改性铬涂层的自腐蚀电位为-0. 341 V,腐蚀电流密度为0. 2058 μA/cm2;铈改性铬涂层则具有更高的自腐蚀电位(-0. 263 V)及更低的腐蚀电流密度(0. 030 86 μA/cm2 ). 结论 钇改性铬涂层不能提高304不锈钢基体的耐腐蚀性能,铈改性铬涂层可以明显提高基体的耐腐蚀性能.
目的 選擇閤適的稀土製備Ti/Cr-RE雙層塗層,提高不鏽鋼的耐腐蝕性能. 方法 採用兩步粉末包埋法,先在304不鏽鋼錶麵滲Ti,再製備稀土改性Cr塗層,穫得Ti/Cr-RE雙層塗層. 通過添加不同的稀土氧化物Y2 O3 和CeO2 ,穫得兩種雙層塗層,對比分析塗層的錶麵形貌、斷麵形貌及物相組成,利用電化學測試方法測定304不鏽鋼基體及兩種Ti/Cr-RE雙層塗層在3 . 5%(質量分數) NaCl溶液中的電化學腐蝕性能. 結果 添加不同稀土元素釔、鈰,都能在滲Ti不鏽鋼錶麵形成一層緻密、連續的稀土改性滲鉻層. 在兩種稀土元素改性的Cr塗層中,稀土元素分彆與Cr,Fe,Ni,Ti形成瞭金屬間化閤物. 304不鏽鋼基體的自腐蝕電位為-0. 324 V,腐蝕電流密度為0. 1363 μA/cm2;釔改性鉻塗層的自腐蝕電位為-0. 341 V,腐蝕電流密度為0. 2058 μA/cm2;鈰改性鉻塗層則具有更高的自腐蝕電位(-0. 263 V)及更低的腐蝕電流密度(0. 030 86 μA/cm2 ). 結論 釔改性鉻塗層不能提高304不鏽鋼基體的耐腐蝕性能,鈰改性鉻塗層可以明顯提高基體的耐腐蝕性能.
목적 선택합괄적희토제비Ti/Cr-RE쌍층도층,제고불수강적내부식성능. 방법 채용량보분말포매법,선재304불수강표면삼Ti,재제비희토개성Cr도층,획득Ti/Cr-RE쌍층도층. 통과첨가불동적희토양화물Y2 O3 화CeO2 ,획득량충쌍층도층,대비분석도층적표면형모、단면형모급물상조성,이용전화학측시방법측정304불수강기체급량충Ti/Cr-RE쌍층도층재3 . 5%(질량분수) NaCl용액중적전화학부식성능. 결과 첨가불동희토원소을、시,도능재삼Ti불수강표면형성일층치밀、련속적희토개성삼락층. 재량충희토원소개성적Cr도층중,희토원소분별여Cr,Fe,Ni,Ti형성료금속간화합물. 304불수강기체적자부식전위위-0. 324 V,부식전류밀도위0. 1363 μA/cm2;을개성락도층적자부식전위위-0. 341 V,부식전류밀도위0. 2058 μA/cm2;시개성락도층칙구유경고적자부식전위(-0. 263 V)급경저적부식전류밀도(0. 030 86 μA/cm2 ). 결론 을개성락도층불능제고304불수강기체적내부식성능,시개성락도층가이명현제고기체적내부식성능.
Objective To prepare Ti/Cr-RE coatings on 304 stainless steel with suitable rare earth elements so as to improve corrosion resistance of stainless steel. Methods The Ti coating and Cr-RE coating were deposited on 304 stainless steel successively via pack cementation. In order to obtain two different Ti/Cr-RE coatings, Y2 O3 and CeO2 were used as RE sources. The sample surface and cross-sectional micrographs were investigated by scanning electron microscopy ( SEM) . The phase composition of sam-ple surface was detected by X-ray diffraction ( XRD) . Electrochemical experiments were carried out to investigate the corrosion re-sistance of the 304 stainless steel substrate and the two kinds of Ti/Cr-RE double-layer coating in 3. 5% NaCl solution. Results It was concluded from all the outcomes that the dense and continuous Cr-RE coatings can be formed on the Ti stainless steel by adding rare earth elements Y and Ce. In the two kinds of Cr coatings modified by rare earth elements, intermetallic compounds were formed from the rare earth elements with Cr, Fe, Ni, and Ti respectively. The corresponding corrosion potential of 304 stainless steel was -0. 324 V, and the corrosion current density was 0. 1363μA/cm2 . The corresponding corrosion potential of Cr-Y coating was -0. 341 V and the corrosion current density was 0. 2058 μA/cm2 ,while the Cr-Ce coating presented higher corresponding cor-rosion potential of -0. 263 V and lower corrosion current density of 0. 030 86 μA/cm2 . Conclusion The Cr-Y coating does not show a promotion in electrochemical corrosion resistance compared with 304 stainless steel, while the Cr-Ce coating presents a good performance in electrochemical corrosion resistance in 3. 5% NaCl solution.