农机化研究
農機化研究
농궤화연구
Journal of Agricultural Mechanization Research
2016年
6期
55-58,121
,共5页
朱莉%罗靖%徐胜勇%杨勇%赵海涛%李卫豪
硃莉%囉靖%徐勝勇%楊勇%趙海濤%李衛豪
주리%라정%서성용%양용%조해도%리위호
油菜害虫%计算机视觉%颜色直方图%C4.5算法
油菜害蟲%計算機視覺%顏色直方圖%C4.5算法
유채해충%계산궤시각%안색직방도%C4.5산법
rapeseed pests%computer vision%color histogram%C4 .5 Algorithm
害虫的准确识别是针对性地施用农药以有效治理虫害的基础,而人工识别的劳动强度大且主观性强.为此,提出了一种利用颜色特征的害虫视觉识别技术. 使用 GrabCut 算法从虫害图像中分割出完整的害虫主体图像并计算其最小外接矩形区域的H/S通道直方图,使用害虫基准图像对其进行直方图反向投影并计算交叉匹配指数. 匹配指数和害虫标签共同组成的特征向量用于训练 C4 .5 分类器. 计算待检害虫图像的交叉匹配指数,输入分类器即可得到识别结果. 实验结果表明:该技术可准确识别菜蝽、菜青虫、猿叶甲、跳甲及蚜虫5 种害虫,准确率达到92%.
害蟲的準確識彆是針對性地施用農藥以有效治理蟲害的基礎,而人工識彆的勞動彊度大且主觀性彊.為此,提齣瞭一種利用顏色特徵的害蟲視覺識彆技術. 使用 GrabCut 算法從蟲害圖像中分割齣完整的害蟲主體圖像併計算其最小外接矩形區域的H/S通道直方圖,使用害蟲基準圖像對其進行直方圖反嚮投影併計算交扠匹配指數. 匹配指數和害蟲標籤共同組成的特徵嚮量用于訓練 C4 .5 分類器. 計算待檢害蟲圖像的交扠匹配指數,輸入分類器即可得到識彆結果. 實驗結果錶明:該技術可準確識彆菜蝽、菜青蟲、猿葉甲、跳甲及蚜蟲5 種害蟲,準確率達到92%.
해충적준학식별시침대성지시용농약이유효치리충해적기출,이인공식별적노동강도대차주관성강.위차,제출료일충이용안색특정적해충시각식별기술. 사용 GrabCut 산법종충해도상중분할출완정적해충주체도상병계산기최소외접구형구역적H/S통도직방도,사용해충기준도상대기진행직방도반향투영병계산교차필배지수. 필배지수화해충표첨공동조성적특정향량용우훈련 C4 .5 분류기. 계산대검해충도상적교차필배지수,수입분류기즉가득도식별결과. 실험결과표명:해기술가준학식별채춘、채청충、원협갑、도갑급아충5 충해충,준학솔체도92%.
The accurate identification of rapeseed pests is the foundation for using the pesticide pertinently .Manual rec-ognition is labour-intensive and strong subjective .The principal part image of the pets was extracted using the GrabCut algorithm and the minimum circumscribed rectangle of the principal part was calculated .Then histogram backprojection in H/S channels was employed between the template images and the rectangle image to obtain the cross matching ratio .The feature vector consist of the ratio and the label of pests was employed to train the C 4 .5 classifier .With the cross matching ratio of the checking image , the C4 .5 classifier may identify the species of the pets .The experiment showed that the pro-posed method may identify five kinds of rapeseed accurately such as erythema , cabbage caterpillar , colaphellus bowringii baly , flea beetle and aphid with the recognition rate of 92%.