南阳师范学院学报
南暘師範學院學報
남양사범학원학보
Journal of Nanyang Normal University
2015年
12期
12-17
,共6页
主成分分析%模糊支持向量机%模糊C均值聚类
主成分分析%模糊支持嚮量機%模糊C均值聚類
주성분분석%모호지지향량궤%모호C균치취류
principal component analysis%fuzzy support vector machine%fuzzy C-means clustering
支持向量机是人工智能研究领域中的重要课题,但该算法不能够对复杂高维的生物医学数据进行准确的分类,而FSVM方法能够利用模糊性对标记样本数据进行较准确的归类,故采用FSVM算法对老年痴呆数据进行分析。通过特征提取方法对数据进行降维,采用主成分分析法提取出数据的11个主成分,并筛选前3个主成分和前2个主成分分别进行分类模型的训练。利用基于FSVM的模糊C均值聚类方法将老年痴呆的121个样本分成了正负两个类别,实验结果表明,FSVM算法能够有效地分析老年痴呆数据。
支持嚮量機是人工智能研究領域中的重要課題,但該算法不能夠對複雜高維的生物醫學數據進行準確的分類,而FSVM方法能夠利用模糊性對標記樣本數據進行較準確的歸類,故採用FSVM算法對老年癡呆數據進行分析。通過特徵提取方法對數據進行降維,採用主成分分析法提取齣數據的11箇主成分,併篩選前3箇主成分和前2箇主成分分彆進行分類模型的訓練。利用基于FSVM的模糊C均值聚類方法將老年癡呆的121箇樣本分成瞭正負兩箇類彆,實驗結果錶明,FSVM算法能夠有效地分析老年癡呆數據。
지지향량궤시인공지능연구영역중적중요과제,단해산법불능구대복잡고유적생물의학수거진행준학적분류,이FSVM방법능구이용모호성대표기양본수거진행교준학적귀류,고채용FSVM산법대노년치태수거진행분석。통과특정제취방법대수거진행강유,채용주성분분석법제취출수거적11개주성분,병사선전3개주성분화전2개주성분분별진행분류모형적훈련。이용기우FSVM적모호C균치취류방법장노년치태적121개양본분성료정부량개유별,실험결과표명,FSVM산법능구유효지분석노년치태수거。
Support vector machine is an important subject in the field of artificial intelligence. But the algorithm is not able to classify the biomedical data in complex high-dimensional accurately. However, fuzzy support vector method can classify labeled sample data accurately using the fuzziness. Therefore, fuzzy support vector machine is used for Alzheimer’ s data analysis. In the process of experiment, the feature extraction method is used to re-duce the data dimension and the principal component analysis method is adopted to extract the eleven principal components of the data. Finally, three principal components and two principal components are screened to train the classification model. Based on the model and the fuzzy C-means clustering method, one hundred and twenty one samples of Alzheimer’ s data is divided into two categories of postive and negative categories. The experimen-tal evidence suggests that the fuzzy support vector algorithm analyze the Alzheimer’ s data effectively.