杭州师范大学学报(自然科学版)
杭州師範大學學報(自然科學版)
항주사범대학학보(자연과학판)
Journal of Hangzhou Normal University (Natural Sciences Edition)
2015年
6期
616-624
,共9页
weakly J-clean环%clean环%唯一weakly nil clean环%幂等元%Jacobson根
weakly J-clean環%clean環%唯一weakly nil clean環%冪等元%Jacobson根
weakly J-clean배%clean배%유일weakly nil clean배%멱등원%Jacobson근
weakly J-clean ring%clean ring%uniquely weakly nil clean ring%idempotent%Jacobson radical
一个环 R叫做w eakly J‐clean环,如果R中的每一个元素都可以写成a= e+ j或a=-e+ j的形式,其中e是幂等元,j属于Jacobson根。文章探究了weakly J‐clean环的各种性质,证明了 R是weakly J‐clean环当且仅当 R是clean环并且 R/J(R)是弱布尔环,当且仅当R/6 R是w eakly J‐clean环且幂等元关于 J(R)可以提升。一个环R是唯一w eakly nil clean环当且仅当 R是阿贝尔环;J(R)是幂零的并且 R是w eakly J‐clean环。每个w eakly J‐clean环 R是右(左)quasi‐duo环。并进一步证明以下几点是等价的:R是 J‐clean环;存在一个大于等于1的整数 n ,使得 Tn (R)是 J‐clean环;存在一个大于等于2的整数 n ,使得 Tn (R)是w eakly J‐clean环;存在一个大于等于2的整数 n ,使得× n R 是w eakly J‐clean环。
一箇環 R叫做w eakly J‐clean環,如果R中的每一箇元素都可以寫成a= e+ j或a=-e+ j的形式,其中e是冪等元,j屬于Jacobson根。文章探究瞭weakly J‐clean環的各種性質,證明瞭 R是weakly J‐clean環噹且僅噹 R是clean環併且 R/J(R)是弱佈爾環,噹且僅噹R/6 R是w eakly J‐clean環且冪等元關于 J(R)可以提升。一箇環R是唯一w eakly nil clean環噹且僅噹 R是阿貝爾環;J(R)是冪零的併且 R是w eakly J‐clean環。每箇w eakly J‐clean環 R是右(左)quasi‐duo環。併進一步證明以下幾點是等價的:R是 J‐clean環;存在一箇大于等于1的整數 n ,使得 Tn (R)是 J‐clean環;存在一箇大于等于2的整數 n ,使得 Tn (R)是w eakly J‐clean環;存在一箇大于等于2的整數 n ,使得× n R 是w eakly J‐clean環。
일개배 R규주w eakly J‐clean배,여과R중적매일개원소도가이사성a= e+ j혹a=-e+ j적형식,기중e시멱등원,j속우Jacobson근。문장탐구료weakly J‐clean배적각충성질,증명료 R시weakly J‐clean배당차부당 R시clean배병차 R/J(R)시약포이배,당차부당R/6 R시w eakly J‐clean배차멱등원관우 J(R)가이제승。일개배R시유일w eakly nil clean배당차부당 R시아패이배;J(R)시멱령적병차 R시w eakly J‐clean배。매개w eakly J‐clean배 R시우(좌)quasi‐duo배。병진일보증명이하궤점시등개적:R시 J‐clean배;존재일개대우등우1적정수 n ,사득 Tn (R)시 J‐clean배;존재일개대우등우2적정수 n ,사득 Tn (R)시w eakly J‐clean배;존재일개대우등우2적정수 n ,사득× n R 시w eakly J‐clean배。
A ring R is called a weakly J‐clean ring if every element a∈ R can be written in the form of a=e+ j or a= -e+ j where e is an idempotent and j belongs to the Jacobson radical .The paper explores various properties of weakly J‐clean rings ,proves that a ring R is weakly J‐clean if and only if R is clean and R/J(R) is weakly Boolean ,if and only if R/6R is weakly J‐clean and idempotents can lift J(R) .A ring R is uniquely weakly nil clean if and only if R is abelian;J(R) is nil and R is weakly J‐clean .Each weakly J‐clean ring R is right(left) quasi‐duo ring .Furthermore ,the paper proves that the following are equivalent :R is J‐clean;there is an integer n≥1 such that Tn (R) is J‐clean ;there is an integer n≥2 such that Tn (R) is weakly J‐clean;there is an integer n≥2 such that × n R is w eakly J‐clean .