东南大学学报(自然科学版)
東南大學學報(自然科學版)
동남대학학보(자연과학판)
Journal of Southeast University (Natural Science Edition)
2015年
6期
1190-1196
,共7页
彭博%蒋阳升%陈成%Kelvin C.P.Wang
彭博%蔣暘升%陳成%Kelvin C.P.Wang
팽박%장양승%진성%Kelvin C.P.Wang
道路工程%识别算法%图像处理%路面裂缝%裂缝融合%裂缝种子
道路工程%識彆算法%圖像處理%路麵裂縫%裂縫融閤%裂縫種子
도로공정%식별산법%도상처리%로면렬봉%렬봉융합%렬봉충자
road engineering%recognition algorithm%image processing%pavement crack%cracking fusion%crack seeds
为了快速、准确、完整地识别裂缝,基于1 mm/像素的路面三维图像提出了具有并行结构的裂缝自动识别算法.首先,进行降维处理,分别以像素(0,0)和(4,4)为起点将源图像划分为8×8像素的子块,获得2幅部分重叠的降维图像;然后,基于降维图像进行裂缝种子识别和裂缝连接,形成10个并列的子流程,从而产生10幅初步裂缝图像;最后,对10幅图像进行裂缝融合与滑动窗口去噪处理,获得裂缝图像.测试结果表明:提出的算法具有较高的准确率(平均92.56%)和召回率(平均90.59%),并以90.59%的 F 值优于 Otsu 阈值分割及 Canny 边缘检测算法;该算法的并行结构有利于程序并行化,能有效提高运算速度.
為瞭快速、準確、完整地識彆裂縫,基于1 mm/像素的路麵三維圖像提齣瞭具有併行結構的裂縫自動識彆算法.首先,進行降維處理,分彆以像素(0,0)和(4,4)為起點將源圖像劃分為8×8像素的子塊,穫得2幅部分重疊的降維圖像;然後,基于降維圖像進行裂縫種子識彆和裂縫連接,形成10箇併列的子流程,從而產生10幅初步裂縫圖像;最後,對10幅圖像進行裂縫融閤與滑動窗口去譟處理,穫得裂縫圖像.測試結果錶明:提齣的算法具有較高的準確率(平均92.56%)和召迴率(平均90.59%),併以90.59%的 F 值優于 Otsu 閾值分割及 Canny 邊緣檢測算法;該算法的併行結構有利于程序併行化,能有效提高運算速度.
위료쾌속、준학、완정지식별렬봉,기우1 mm/상소적로면삼유도상제출료구유병행결구적렬봉자동식별산법.수선,진행강유처리,분별이상소(0,0)화(4,4)위기점장원도상화분위8×8상소적자괴,획득2폭부분중첩적강유도상;연후,기우강유도상진행렬봉충자식별화렬봉련접,형성10개병렬적자류정,종이산생10폭초보렬봉도상;최후,대10폭도상진행렬봉융합여활동창구거조처리,획득렬봉도상.측시결과표명:제출적산법구유교고적준학솔(평균92.56%)화소회솔(평균90.59%),병이90.59%적 F 치우우 Otsu 역치분할급 Canny 변연검측산법;해산법적병행결구유리우정서병행화,능유효제고운산속도.
In order to detect pavement cracking rapidly,accurately and completely,an automatic cracking recognition algorithm with a parallel structure is proposed based on 1 mm/pixel 3D pave-ment images.First,image dimensional reduction is conducted.A source image is divided into blocks of 8 ×8 pixels from origin pixels (0,0)and (4,4),respectively,and two partly overlapped images with lower dimensions are obtained correspondingly.Then,crack seed recognition and crack connection are conducted on the two lower-dimensional images,forming 10 parallel sub-workflows, from which 10 preliminary crack images are generated.Finally,the 10 preliminary crack images are fused and then processed via sliding-window denoising techniques,yielding final crack image.Test results show that the proposed algorithm achieves relatively high precision (averaging 92.56%)and recall (averaging 90.59%).It outperforms Otsu threshold segmentation and Canny edge detection with an F score of 90.59%.Furthermore,the parallel structure of the proposed algorithm helps par-allel programming,which can effectively improve computing speed.