潍坊工程职业学院学报
濰坊工程職業學院學報
유방공정직업학원학보
Journal of Weifang Engineering Vocational College
2015年
6期
77-79,86
,共4页
局部有界函数%Lupas-B é zier 算子%收敛阶
跼部有界函數%Lupas-B é zier 算子%收斂階
국부유계함수%Lupas-B é zier 산자%수렴계
the locally bounded function%Lupas -Bézier operator%rate of convergence
对局部有界函数 f 的 Integral 型 Lupas-Bézier 算子在区间[0,)∞上收敛于[f (x+)+αf (x-)]/(α+1)的收敛阶进行研究,利用 Cauch-Schwarz 不等式和 Lupas 基函数的概率性质等方法,对前人关于 Integral 型 Lupas-Bézier 算子收敛阶的系数估计作了进一步的改进,得到了较优的系数估计。
對跼部有界函數 f 的 Integral 型 Lupas-Bézier 算子在區間[0,)∞上收斂于[f (x+)+αf (x-)]/(α+1)的收斂階進行研究,利用 Cauch-Schwarz 不等式和 Lupas 基函數的概率性質等方法,對前人關于 Integral 型 Lupas-Bézier 算子收斂階的繫數估計作瞭進一步的改進,得到瞭較優的繫數估計。
대국부유계함수 f 적 Integral 형 Lupas-Bézier 산자재구간[0,)∞상수렴우[f (x+)+αf (x-)]/(α+1)적수렴계진행연구,이용 Cauch-Schwarz 불등식화 Lupas 기함수적개솔성질등방법,대전인관우 Integral 형 Lupas-Bézier 산자수렴계적계수고계작료진일보적개진,득도료교우적계수고계。
In this paper, using Cauch -Schwarz inequality and the probabilistic property of Lupas primary op-erator,we study the rate of convergence of Integral type Lupas -Bézier operator which is convergent to [f(x +) +αf(x -)] /( α+1) on [0,∞) for the locally bounded function.f.Our study improves Zeng and the other schol-ars′estimation of Integral type Lupas -Bézier operator.At the same time, we get more perfect estimates of coeffi-cient.