北华大学学报(自然科学版)
北華大學學報(自然科學版)
북화대학학보(자연과학판)
Journal of Beihua University (Natural Science)
2015年
6期
841-844
,共4页
多目标优化%遗传算法%模糊理论%两连杆桁架
多目標優化%遺傳算法%模糊理論%兩連桿桁架
다목표우화%유전산법%모호이론%량련간항가
multi-objective optimization%genetic algorithm%fuzzy theory%two connecting truss
针对两连杆桁架的多目标最优化设计问题,提出一种利用遗传算法和模糊理论来求解多目标优化问题的Pareto最优解算法,并通过实验进行验证;讨论遗传算法和模糊理论产生Pareto最优解的差异。结果显示:通过遗传算法配合近似分析的方法可以更有效率地寻找到更多的Pareto最优解。
針對兩連桿桁架的多目標最優化設計問題,提齣一種利用遺傳算法和模糊理論來求解多目標優化問題的Pareto最優解算法,併通過實驗進行驗證;討論遺傳算法和模糊理論產生Pareto最優解的差異。結果顯示:通過遺傳算法配閤近似分析的方法可以更有效率地尋找到更多的Pareto最優解。
침대량련간항가적다목표최우화설계문제,제출일충이용유전산법화모호이론래구해다목표우화문제적Pareto최우해산법,병통과실험진행험증;토론유전산법화모호이론산생Pareto최우해적차이。결과현시:통과유전산법배합근사분석적방법가이경유효솔지심조도경다적Pareto최우해。
In order to solve the problem of multi-objective optimization of two connecting truss design ,Pareto optimized algorithm is proposed based on a genetic algorithm and fuzzy theory,and is verified by the experiment. The paper will focus on the difference between Pareto optimized solutions based on genetic algorithm and fuzzy theory. The results show that the combination of genetic algorithm and approximate analysis can be a more efficient way to find the more Pareto optimized solutions.