传感技术学报
傳感技術學報
전감기술학보
Chinese Journal of Sensors and Actuators
2015年
11期
1670-1675
,共6页
谢国民%丁会巧%付华%王馨蕊
謝國民%丁會巧%付華%王馨蕊
사국민%정회교%부화%왕형예
煤与瓦斯突出%模糊粗糙集%信息约简%遗传算法%极端学习机
煤與瓦斯突齣%模糊粗糙集%信息約簡%遺傳算法%極耑學習機
매여와사돌출%모호조조집%신식약간%유전산법%겁단학습궤
coal and gas outburst%the fuzzy rough set%Information about Jane%genetic algorithm%extreme learning machine
针对煤与瓦斯突出发生内在机理复杂性、致突因素与突出事件之间模糊性导致预测精度不高这一问题,提出将模糊粗糙集理论(FRS)结合改进的极端学习机(ELM)进行煤与瓦斯突出预测。通过FRS信息约简理论降低致突因素原始数据属性维度,提取出致突辅助因素,与主要因素共同作为ELM网络神经元输入,利用遗传算法(GA)对极端学习机网络输入权值、隐含层阈值进行优化,建立GA-ELM预测模型,模型输出为煤与瓦斯突出强度预测结果。经过模型训练和试验验证,该模型泛化能力强、预测精度高、收敛速度明显加快。
針對煤與瓦斯突齣髮生內在機理複雜性、緻突因素與突齣事件之間模糊性導緻預測精度不高這一問題,提齣將模糊粗糙集理論(FRS)結閤改進的極耑學習機(ELM)進行煤與瓦斯突齣預測。通過FRS信息約簡理論降低緻突因素原始數據屬性維度,提取齣緻突輔助因素,與主要因素共同作為ELM網絡神經元輸入,利用遺傳算法(GA)對極耑學習機網絡輸入權值、隱含層閾值進行優化,建立GA-ELM預測模型,模型輸齣為煤與瓦斯突齣彊度預測結果。經過模型訓練和試驗驗證,該模型汎化能力彊、預測精度高、收斂速度明顯加快。
침대매여와사돌출발생내재궤리복잡성、치돌인소여돌출사건지간모호성도치예측정도불고저일문제,제출장모호조조집이론(FRS)결합개진적겁단학습궤(ELM)진행매여와사돌출예측。통과FRS신식약간이론강저치돌인소원시수거속성유도,제취출치돌보조인소,여주요인소공동작위ELM망락신경원수입,이용유전산법(GA)대겁단학습궤망락수입권치、은함층역치진행우화,건립GA-ELM예측모형,모형수출위매여와사돌출강도예측결과。경과모형훈련화시험험증,해모형범화능력강、예측정도고、수렴속도명현가쾌。
In view of the complexity of the inner mechanism of the coal and gas outburst occurred,sudden factors and fuzziness between prominent events lead to the question of the prediction accuracy is not high,puts forward the fuzzy rough set theory (FRS) combined with improved extreme learning mechanism of the original data attribute di?mension,extract the cause of the important factors,as the ELM network input neurons,extreme learning machine us?ing genetic algorithm (GA) to optimize the hidden layer of network weights and threshold of GA-ELM prediction model is established,the model output for coal and gas outburst intensity forecast results. After experimental verifi?cation,the model generalization ability is well and high prediction accuracy.