系统工程与电子技术
繫統工程與電子技術
계통공정여전자기술
Systems Engineering and Electronics
2015年
12期
2725-2732
,共8页
多输入多输出雷达%L 型阵列%稀疏重构%波达方向估计
多輸入多輸齣雷達%L 型陣列%稀疏重構%波達方嚮估計
다수입다수출뢰체%L 형진렬%희소중구%파체방향고계
multiple-input multiple-output (MIMO)radar%L-shaped array%sparse reconstruction%direc-tion of arrival (DOA)estimation
针对L型阵列多输入多输出(multiple-input multiple-output,MIMO)雷达二维空间角估计问题,提出一种基于协方差矩阵联合稀疏重构的降维波达方向(direction of arrival,DOA)估计算法。该算法根据 L 型阵列 MIMO雷达联合流型矢量的特点,通过降维矩阵的设计及回波数据的降维变换,最大程度地去除了所有的冗余数据;通过协方差矩阵联合构造稀疏线性模型,将2维角参量空间映射到1维空间,极大降低字典长度和求解复杂度的同时,不牺牲阵列孔径,实现了二维空间角度的有效估计和参数的自动配对。理论分析与实验仿真表明:与 RDMUSIC 算法相比,本文降维处理有效提高阵元利用率的同时,最大程度地降低了回波数据的维数;与传统子空间类算法相比,基于协方差矩阵联合构造的稀疏线性模型充分利用了阵列孔径,无需预先估计目标数目,参数估计性能在低信噪比及小快拍数据长度下优势明显。最后,仿真结果验证了本文理论分析的正确性和算法的有效性。
針對L型陣列多輸入多輸齣(multiple-input multiple-output,MIMO)雷達二維空間角估計問題,提齣一種基于協方差矩陣聯閤稀疏重構的降維波達方嚮(direction of arrival,DOA)估計算法。該算法根據 L 型陣列 MIMO雷達聯閤流型矢量的特點,通過降維矩陣的設計及迴波數據的降維變換,最大程度地去除瞭所有的冗餘數據;通過協方差矩陣聯閤構造稀疏線性模型,將2維角參量空間映射到1維空間,極大降低字典長度和求解複雜度的同時,不犧牲陣列孔徑,實現瞭二維空間角度的有效估計和參數的自動配對。理論分析與實驗倣真錶明:與 RDMUSIC 算法相比,本文降維處理有效提高陣元利用率的同時,最大程度地降低瞭迴波數據的維數;與傳統子空間類算法相比,基于協方差矩陣聯閤構造的稀疏線性模型充分利用瞭陣列孔徑,無需預先估計目標數目,參數估計性能在低信譟比及小快拍數據長度下優勢明顯。最後,倣真結果驗證瞭本文理論分析的正確性和算法的有效性。
침대L형진렬다수입다수출(multiple-input multiple-output,MIMO)뢰체이유공간각고계문제,제출일충기우협방차구진연합희소중구적강유파체방향(direction of arrival,DOA)고계산법。해산법근거 L 형진렬 MIMO뢰체연합류형시량적특점,통과강유구진적설계급회파수거적강유변환,최대정도지거제료소유적용여수거;통과협방차구진연합구조희소선성모형,장2유각삼량공간영사도1유공간,겁대강저자전장도화구해복잡도적동시,불희생진렬공경,실현료이유공간각도적유효고계화삼수적자동배대。이론분석여실험방진표명:여 RDMUSIC 산법상비,본문강유처리유효제고진원이용솔적동시,최대정도지강저료회파수거적유수;여전통자공간류산법상비,기우협방차구진연합구조적희소선성모형충분이용료진렬공경,무수예선고계목표수목,삼수고계성능재저신조비급소쾌박수거장도하우세명현。최후,방진결과험증료본문이론분석적정학성화산법적유효성。
Aiming at the problem of two dimensional angles estimation for multiple-input multiple-output (MIMO)radar with L-shaped array,a new reduced-dimensional direction of arrival (DOA)estimation method based on sparse reconstruction is proposed.Giving the steering vector of MIMO radar with L-shaped array,a reduced-dimensional matrix is employed,and data redundancy of high dimensional received data at the greatest degree can be removed via the reduced-dimensional transformation.Through the joint construction of the two-dimensional sparse linear model with covariance matrix,the dimension of the dictionary is reduced to one-dimen-sion from two-dimensional space,and the length of the redundant dictionary and computation complexity is largely reduced.Furthermore,the method,without costing the aperture of array,can realize two dimensional spatial angles estimation with automatic pairing.Compared with reduced-dimensional (RD)MUSIC,the pro-posed method can reduce the dimension of received data at the greatest degree and enhance sensors efficiency.Com-pared with the traditional subspace algorithms,the proposed method,which is based on the joint sparse linear model of the covariance matrix,makes the best of all apertures of array and can achieve better estimation performance under lower signal-noise-ratio(SNR)and a few snapshots without pre-estimation for the number of targets.Finally,simula-tion results verify the correctness of the theoretical analysis and the effect of the proposed algorithm.