东北大学学报(自然科学版)
東北大學學報(自然科學版)
동북대학학보(자연과학판)
Journal of Northeastern University (Natural Science)
2015年
12期
1780-1784
,共5页
车体结构%纵梁%正面碰撞%仿真%方案选择
車體結構%縱樑%正麵踫撞%倣真%方案選擇
차체결구%종량%정면팽당%방진%방안선택
vehicle structure%longitudinal rail%full frontal impact%simulation%scheme choice
为了得出具有较好碰撞潜能的目标车体结构,提出了两个不同的纵梁设计方案,基于有限元理论重点提出了仿真建模中运用比较普遍的对称罚函数法。按照整车变形量、车体减速度、乘员舱侵入量三个评价指标分别评价方案一和方案二,两个方案的整体变形都符合要求;方案二由于设置了诱导槽,在碰撞中吸能盒到纵梁从前至后依次溃缩变形,方案二的减速度曲线更加符合“前高后低”原则及其平均通过力更为平缓;方案二乘员舱侵入量更少。仿真表明设计出的纵梁要有适当的变形引导,纵梁应实现稳定的轴向溃缩模式。因此选择具有更好的碰撞性能的方案二右边车体减速度曲线作为乘员约束系统优化的输入值。
為瞭得齣具有較好踫撞潛能的目標車體結構,提齣瞭兩箇不同的縱樑設計方案,基于有限元理論重點提齣瞭倣真建模中運用比較普遍的對稱罰函數法。按照整車變形量、車體減速度、乘員艙侵入量三箇評價指標分彆評價方案一和方案二,兩箇方案的整體變形都符閤要求;方案二由于設置瞭誘導槽,在踫撞中吸能盒到縱樑從前至後依次潰縮變形,方案二的減速度麯線更加符閤“前高後低”原則及其平均通過力更為平緩;方案二乘員艙侵入量更少。倣真錶明設計齣的縱樑要有適噹的變形引導,縱樑應實現穩定的軸嚮潰縮模式。因此選擇具有更好的踫撞性能的方案二右邊車體減速度麯線作為乘員約束繫統優化的輸入值。
위료득출구유교호팽당잠능적목표차체결구,제출료량개불동적종량설계방안,기우유한원이론중점제출료방진건모중운용비교보편적대칭벌함수법。안조정차변형량、차체감속도、승원창침입량삼개평개지표분별평개방안일화방안이,량개방안적정체변형도부합요구;방안이유우설치료유도조,재팽당중흡능합도종량종전지후의차궤축변형,방안이적감속도곡선경가부합“전고후저”원칙급기평균통과력경위평완;방안이승원창침입량경소。방진표명설계출적종량요유괄당적변형인도,종량응실현은정적축향궤축모식。인차선택구유경호적팽당성능적방안이우변차체감속도곡선작위승원약속계통우화적수입치。
In order to design structure of better impact potential for target vehicle,a finite element modeling used symmetry penalty method frequently was put forward to simulate two longitudinal rails schemes.Case 1 and 2 were separately appraised by three indexes including the vehicle deformation,deceleration and the passenger compartment intrusion:overall deformation is in line with the requirements in two cases.But because of induced slots,crumple deformation occurred in sequence from energy absorbing boxes to the longitudinal rails (from front to rear)during the impact in Case 2.Deceleration curves of Case 2 were also more consistent with principle of “the first step is taller and the second is lower”and the average passing force was more gently and cabin intrusions were less.Simulation results show that the design of longitudinal rail must have appropriate deformation guide to come true steady axial collapse mode.So the right deceleration curve of Case 2 was selected as the input value of occupant restraint system optimization.