计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2010年
3期
163-165
,共3页
多分类器融合%遗传算法%加权系数矩阵
多分類器融閤%遺傳算法%加權繫數矩陣
다분류기융합%유전산법%가권계수구진
multi-classifiers fusion%genetic algorithm%weighted coefficient matrix
为了提高单一分类器的识别性能,在模式识别领域经常采用多分类器集成的方法.提出了一种基于GA的多分类器融合算法,首先通过GA算法对特征集的分割进行优化选择,形成了较优的成员分类器;然后通过对成员分类器分辨能力的度量,提出了一种加权系数矩阵的多分类器组合方法.在UCI数据库上进行了实验,结果表明所提出的算法具有较高的识别率.
為瞭提高單一分類器的識彆性能,在模式識彆領域經常採用多分類器集成的方法.提齣瞭一種基于GA的多分類器融閤算法,首先通過GA算法對特徵集的分割進行優化選擇,形成瞭較優的成員分類器;然後通過對成員分類器分辨能力的度量,提齣瞭一種加權繫數矩陣的多分類器組閤方法.在UCI數據庫上進行瞭實驗,結果錶明所提齣的算法具有較高的識彆率.
위료제고단일분류기적식별성능,재모식식별영역경상채용다분류기집성적방법.제출료일충기우GA적다분류기융합산법,수선통과GA산법대특정집적분할진행우화선택,형성료교우적성원분류기;연후통과대성원분류기분변능력적도량,제출료일충가권계수구진적다분류기조합방법.재UCI수거고상진행료실험,결과표명소제출적산법구유교고적식별솔.
In order to improve the performance of single classifier,multi-classifier fusion methods have been widely used.This paper gives a new multi-classifiers fusion algorithm based on GA.To begin with,the genetic algorithm is used to partition the feature set into subsets of features for generating member classifiers,and then a new multi-classifier combining method based on weighted coefficient matrix is proposed according to the concept of class distinguishing ability presented by us.Experiments with UCI datasets show that the performance of the proposed algorithm is improved with high correct recognition rate.