计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2010年
3期
192-194
,共3页
翟永杰%李海丽%王东风%韩璞
翟永傑%李海麗%王東風%韓璞
적영걸%리해려%왕동풍%한박
广义预测控制%最小二乘支持向量机%误差补偿
廣義預測控製%最小二乘支持嚮量機%誤差補償
엄의예측공제%최소이승지지향량궤%오차보상
Generalized Predictive Control(GPC)%Least Squares Support Vector Machine(LS-SVM)%error compensation
广义预测控制(Generalized Predictive Control,GPC)汲取了DMC(Dynamic Matrix Control)、MAC(Model AlgorithmicControl)中的多步预测优化策略,抗负载扰动、随机噪声、时延变化等能力强,且选取模型参数少,利于控制.然而,据研究发现GPC对模型失配问题有一定的局限性.最小二乘支持向量机(Least Squares Support Vector Machine,LS-SVM)是在支持向量机的研究基础上发展而来的,具有良好的回归、分类功能.在认真学习LS-SVM原理的基础上,提出了基于LS-SVM误差补偿的广义预测控制,并选择两个模型进行了仿真实验.通过与常规GPC的比较,表明了该算法具有更优的控制性能.
廣義預測控製(Generalized Predictive Control,GPC)伋取瞭DMC(Dynamic Matrix Control)、MAC(Model AlgorithmicControl)中的多步預測優化策略,抗負載擾動、隨機譟聲、時延變化等能力彊,且選取模型參數少,利于控製.然而,據研究髮現GPC對模型失配問題有一定的跼限性.最小二乘支持嚮量機(Least Squares Support Vector Machine,LS-SVM)是在支持嚮量機的研究基礎上髮展而來的,具有良好的迴歸、分類功能.在認真學習LS-SVM原理的基礎上,提齣瞭基于LS-SVM誤差補償的廣義預測控製,併選擇兩箇模型進行瞭倣真實驗.通過與常規GPC的比較,錶明瞭該算法具有更優的控製性能.
엄의예측공제(Generalized Predictive Control,GPC)급취료DMC(Dynamic Matrix Control)、MAC(Model AlgorithmicControl)중적다보예측우화책략,항부재우동、수궤조성、시연변화등능력강,차선취모형삼수소,리우공제.연이,거연구발현GPC대모형실배문제유일정적국한성.최소이승지지향량궤(Least Squares Support Vector Machine,LS-SVM)시재지지향량궤적연구기출상발전이래적,구유량호적회귀、분류공능.재인진학습LS-SVM원리적기출상,제출료기우LS-SVM오차보상적엄의예측공제,병선택량개모형진행료방진실험.통과여상규GPC적비교,표명료해산법구유경우적공제성능.
Learning the multi-step forecast optimization strategy from Dynamic Matrix Control(DMC) and Model Algorithmic Control(MAC),Generalized Predictive Control(GPC) has a strong ability to overcome load disturbance,random noise and delay change,and the selected model has less parameters,so it is easy to control.However, according to rezearch,GPC has some limitations in the problem of model mismatch.LS-SVM is developed based on Support Vector Machines,and has sound functions in regression and classification.On the basis of conscientiously studying the Least Squares Support Vector Machine(LS-SVM) principle,the GPC based on LS-SVM error compensation is proposed,and is simulated on two models.From the comparison with the conventional GPC,it proves that the algorithm had better performances in control.