计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2010年
9期
241-245
,共5页
支持向量机%参数优选%实数量子进化算法%交通流预测
支持嚮量機%參數優選%實數量子進化算法%交通流預測
지지향량궤%삼수우선%실수양자진화산법%교통류예측
Support Vector Regression(SVR)%parameters selection%real-coded quantum evolutionary algorithm%traffic flow forecasting
建立在统计学习理论和结构风险最小化准则基础上的支持向量回归(SVR)是处理小样本数据回归问题的有利工具,SVR的参数选取直接影响其学习性能和泛化能力.文中将SVR参数选取看作是参数的组合优化问题,确定组合优化问题的目标函数,采用实数量子进化算法(RQEA)求解组合优化问题进而优选SVR参数,形成RQEA-SVR,并应用RQEA-SVR求解交通流预测问题.仿真试验表明RQEA是优选SVR参数的有效方法,解决交通流预测问题具有优良的性能.
建立在統計學習理論和結構風險最小化準則基礎上的支持嚮量迴歸(SVR)是處理小樣本數據迴歸問題的有利工具,SVR的參數選取直接影響其學習性能和汎化能力.文中將SVR參數選取看作是參數的組閤優化問題,確定組閤優化問題的目標函數,採用實數量子進化算法(RQEA)求解組閤優化問題進而優選SVR參數,形成RQEA-SVR,併應用RQEA-SVR求解交通流預測問題.倣真試驗錶明RQEA是優選SVR參數的有效方法,解決交通流預測問題具有優良的性能.
건립재통계학습이론화결구풍험최소화준칙기출상적지지향량회귀(SVR)시처리소양본수거회귀문제적유리공구,SVR적삼수선취직접영향기학습성능화범화능력.문중장SVR삼수선취간작시삼수적조합우화문제,학정조합우화문제적목표함수,채용실수양자진화산법(RQEA)구해조합우화문제진이우선SVR삼수,형성RQEA-SVR,병응용RQEA-SVR구해교통류예측문제.방진시험표명RQEA시우선SVR삼수적유효방법,해결교통류예측문제구유우량적성능.
Support Vector Regression(SVR) based on statistical learning theory and structural risk minimization principle is a powerful tool for solving small-sample regression problem,and selecting appropriate parameters is very crucial to learn accuracy and generalization performance of SVR.Firstly,the parameters selection of SVR is considered as a combinatorial optimization problem,and the objective function of optimization problem is set.Then,Real-coded Quantum Evolutionary Algorithm(RQEA) is employed to solve this problem furthermore to select appropriate parameters of SVR,which is called RQEA-SVR,and RQEA-SVR is applied to the problem of traffic flow forecasting.The experiment results show that the proposed method is an effective approach for parameters selection of SVR,and the good performance for traffic flow forecasting is obtained.