计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2010年
3期
128-130
,共3页
压缩感知%稀疏信号%参数规则化%信号恢复
壓縮感知%稀疏信號%參數規則化%信號恢複
압축감지%희소신호%삼수규칙화%신호회복
compressed sensing%sparse signal%parameter regularization strategy%signal recovery
稀疏信号的快速优化恢复是压缩感知理论(Compressed Sensing,CS)研究的热点.讨论了参数选取对迭代加权l_1范数优化算法恢复效果的影响,并将参数规则化过程引入到算法中,提出了带有参数规则化过程的迭代加权l_1范数优化算法.最后通过数值实验,表明改进的算法较大程度地提升了对稀疏信号的恢复能力.
稀疏信號的快速優化恢複是壓縮感知理論(Compressed Sensing,CS)研究的熱點.討論瞭參數選取對迭代加權l_1範數優化算法恢複效果的影響,併將參數規則化過程引入到算法中,提齣瞭帶有參數規則化過程的迭代加權l_1範數優化算法.最後通過數值實驗,錶明改進的算法較大程度地提升瞭對稀疏信號的恢複能力.
희소신호적쾌속우화회복시압축감지이론(Compressed Sensing,CS)연구적열점.토론료삼수선취대질대가권l_1범수우화산법회복효과적영향,병장삼수규칙화과정인입도산법중,제출료대유삼수규칙화과정적질대가권l_1범수우화산법.최후통과수치실험,표명개진적산법교대정도지제승료대희소신호적회복능력.
Rapid recovery of sparse signals is an important issue in compressed sensing.This paper discusses the parameter se-lection of the signal recovery algorithm via the iterative weighted l_1 norm.A regularization strategy is introduced for the iterative weighted l_1 norm to improve the stability of the recovery algorithm.Several numerical experiments are carried out to evaluate the improvement of the proposed algorithm.Numerical result shows that the proposed algorithm can obviously improve the accuracy and stability of sparse signal recovery.