计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2013年
19期
153-157
,共5页
聚类%k-medoids算法%密度初始化%目标函数
聚類%k-medoids算法%密度初始化%目標函數
취류%k-medoids산법%밀도초시화%목표함수
clustering%k-me doids algorithm%density initialization%criterion function
针对k-medoids算法对初始聚类中心敏感,聚类精度较低及收敛速度缓慢的缺点,提出一种基于密度初始化、密度迭代的搜索策略和准则函数优化的方法。该算法初始化是在高密度区域内选择k 个相对距离较远的样本作为聚类初始中心,有效定位聚类的最终中心点;在k个与初始中心点密度相近的区域内进行中心点替换,以减少候选点的搜索范围;采用类间距和类内距加权的均衡化准则函数,提高聚类精度。实验结果表明,相对于传统的k-mediods 算法及某些改进算法,该算法可以提高聚类质量,有效缩短聚类时间。
針對k-medoids算法對初始聚類中心敏感,聚類精度較低及收斂速度緩慢的缺點,提齣一種基于密度初始化、密度迭代的搜索策略和準則函數優化的方法。該算法初始化是在高密度區域內選擇k 箇相對距離較遠的樣本作為聚類初始中心,有效定位聚類的最終中心點;在k箇與初始中心點密度相近的區域內進行中心點替換,以減少候選點的搜索範圍;採用類間距和類內距加權的均衡化準則函數,提高聚類精度。實驗結果錶明,相對于傳統的k-mediods 算法及某些改進算法,該算法可以提高聚類質量,有效縮短聚類時間。
침대k-medoids산법대초시취류중심민감,취류정도교저급수렴속도완만적결점,제출일충기우밀도초시화、밀도질대적수색책략화준칙함수우화적방법。해산법초시화시재고밀도구역내선택k 개상대거리교원적양본작위취류초시중심,유효정위취류적최종중심점;재k개여초시중심점밀도상근적구역내진행중심점체환,이감소후선점적수색범위;채용류간거화류내거가권적균형화준칙함수,제고취류정도。실험결과표명,상대우전통적k-mediods 산법급모사개진산법,해산법가이제고취류질량,유효축단취류시간。
For the disadvantages that sensitivity to centers initialization, lower clustering accuracy and slow convergent speed of k-medoids algorithm, a novel k-medoids algorithm based on density initialization, density of iterative search strategy and optimi-zation criterion function is proposed. The Initialization of the algorithm is that, it chooses k cluster centers in the high-density area which are far apart, effectively positioning of the final cluster center. To replace the centers are in the ranges which are proximity to the k-initial centers, to reduce the scope of the search candidate point. Criterion function of equalization based on class density and within-class density weighted is adopted to improve the clustering precision. Experimental results show that this algorithm can improve the clustering quality, shorten the clustering time compared with traditional k-medoids algorithms or other improved algorithms.