计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
6期
175-178
,共4页
人脸识别%组稀疏表示%块正交匹配追踪
人臉識彆%組稀疏錶示%塊正交匹配追蹤
인검식별%조희소표시%괴정교필배추종
face recognition%group sparse representation%block orthogonal matching pursuit
采用组稀疏表示分类方法时,同类样本同时参与对测试样本的表示,忽略了类内样本间的相关性。提出了一种改进方法,该方法在块正交匹配追踪算法基础上,将样本间的相干系数作为参数,设置适当的阈值,对每次选取的样本进行判别,剔除与测试样本相关性较差的样本,优化算法的重建性能。在Yale B和ORL的数据库上的实验表明,与原有方法相比,改进后的方法得到的识别率较高,实验结果证明了该方法的有效性。
採用組稀疏錶示分類方法時,同類樣本同時參與對測試樣本的錶示,忽略瞭類內樣本間的相關性。提齣瞭一種改進方法,該方法在塊正交匹配追蹤算法基礎上,將樣本間的相榦繫數作為參數,設置適噹的閾值,對每次選取的樣本進行判彆,剔除與測試樣本相關性較差的樣本,優化算法的重建性能。在Yale B和ORL的數據庫上的實驗錶明,與原有方法相比,改進後的方法得到的識彆率較高,實驗結果證明瞭該方法的有效性。
채용조희소표시분류방법시,동류양본동시삼여대측시양본적표시,홀략료류내양본간적상관성。제출료일충개진방법,해방법재괴정교필배추종산법기출상,장양본간적상간계수작위삼수,설치괄당적역치,대매차선취적양본진행판별,척제여측시양본상관성교차적양본,우화산법적중건성능。재Yale B화ORL적수거고상적실험표명,여원유방법상비,개진후적방법득도적식별솔교고,실험결과증명료해방법적유효성。
When the group sparse representation is used to face recognition, the same samples take part in representation of the test sample at the same time. The original method ignores the correlation between the samples. To solve this problem, an improved block orthogonal matching pursuit algorithm is presented. The presented algorithm uses the coherent coefficient of the samples as a parameter, setting the proper threshold value to select sample discrimination. Therefore, the reconstruction of the algorithm is optimized. Experiments on the Yale B database and the ORL database show that the recognition rate of improved algorithm is higher than the original one. The experiment results verify the validity of the proposed algorithm.