价值工程
價值工程
개치공정
VALUE ENGINEERING
2014年
32期
37-38,39
,共3页
ARIMA模型%风电功率%时间序列
ARIMA模型%風電功率%時間序列
ARIMA모형%풍전공솔%시간서렬
ARIMA model%wind power%time series
风电功率的随机波动被认为是对电网带来不利影响的主要因素。研究风电功率的波动特性,对改善风电预测精度与克服风电接入对电网的不利影响都有重要意义。本文通过对30天的风电数据加总,求得15min级的风电功率数据,提出了基于ARIMA模型的风电功率的预测模型。通过对数据进行单步预测取得较好的预测结果,说明ARIMA(1,1,1)模型能够较好的拟合原始数据。给风电功率的预测提供了新的思路。
風電功率的隨機波動被認為是對電網帶來不利影響的主要因素。研究風電功率的波動特性,對改善風電預測精度與剋服風電接入對電網的不利影響都有重要意義。本文通過對30天的風電數據加總,求得15min級的風電功率數據,提齣瞭基于ARIMA模型的風電功率的預測模型。通過對數據進行單步預測取得較好的預測結果,說明ARIMA(1,1,1)模型能夠較好的擬閤原始數據。給風電功率的預測提供瞭新的思路。
풍전공솔적수궤파동피인위시대전망대래불리영향적주요인소。연구풍전공솔적파동특성,대개선풍전예측정도여극복풍전접입대전망적불리영향도유중요의의。본문통과대30천적풍전수거가총,구득15min급적풍전공솔수거,제출료기우ARIMA모형적풍전공솔적예측모형。통과대수거진행단보예측취득교호적예측결과,설명ARIMA(1,1,1)모형능구교호적의합원시수거。급풍전공솔적예측제공료신적사로。
The random fluctuations of wind power are ragarded as the main factor of the adverse effect to the grid. That we study the fluctuation characteristics of wind power is attatch much importance to improve the prediction accuracy of wind power and to overcome the adverse effect of wind power on the grid. This article uses the 30 days summation of the wind power in order to get the 15min level wind power data, and get the ARIMA model of wind power prediction. We get the better result by using the one-step prediction and we get out of the conclusion that ARIMA(1,1,1)model can better fit the original data. This article draws a new concept of the prediction of the wind power.