城市建筑
城市建築
성시건축
URBANISM AND ARCHITECTURE
2013年
10期
264-264,275
,共2页
自锚式悬索桥%可靠度 BP-PSO%神经网络算法%蒙特卡洛法
自錨式懸索橋%可靠度 BP-PSO%神經網絡算法%矇特卡洛法
자묘식현색교%가고도 BP-PSO%신경망락산법%몽특잡락법
self-anchored suspension bridge%reliability%BP-PSO neural network algorithm%Monte Carlo method
自锚式悬索桥造型美观,且不需要庞大的锚碇。其将主缆锚固于加劲梁上,受力发生了极大的变化。因此,研究自锚式悬索桥的可靠性十分必要。采用 BP 神经网络法拟合可靠度计算的极限状态函数,引入粒子群算法优化神经网络法的初始权值,实现函数拟合的双优化,新算法则利用 MATLAB 编程实现。极限状态函数显化后,结合蒙特卡洛法计算自锚式悬索桥在正常使用极限状态下的可靠度。
自錨式懸索橋造型美觀,且不需要龐大的錨碇。其將主纜錨固于加勁樑上,受力髮生瞭極大的變化。因此,研究自錨式懸索橋的可靠性十分必要。採用 BP 神經網絡法擬閤可靠度計算的極限狀態函數,引入粒子群算法優化神經網絡法的初始權值,實現函數擬閤的雙優化,新算法則利用 MATLAB 編程實現。極限狀態函數顯化後,結閤矇特卡洛法計算自錨式懸索橋在正常使用極限狀態下的可靠度。
자묘식현색교조형미관,차불수요방대적묘정。기장주람묘고우가경량상,수력발생료겁대적변화。인차,연구자묘식현색교적가고성십분필요。채용 BP 신경망락법의합가고도계산적겁한상태함수,인입입자군산법우화신경망락법적초시권치,실현함수의합적쌍우화,신산법칙이용 MATLAB 편정실현。겁한상태함수현화후,결합몽특잡락법계산자묘식현색교재정상사용겁한상태하적가고도。
The self-anchored suspension bridge has the adva-ntages of beautiful appearance, and does not need huge anchor. The main cable is anchored in the stiffening girder, its stress changed. Therefore, study on the reliability of self-anchored suspension bridge is very necessary. Using BP neural networ-k method to fit the reliability calculation of the limit state func-tion, bringing in the initial weight of particle swarm optimiza-tion neural network method, realize the dual optimization func-tion fit ing, a new algorithm using MATLAB programming. To manifest the limit state function, calculate the self-anchored suspension bridge in reliability under serviceability limit states with Monte Carlo method.