数学研究
數學研究
수학연구
JOURNAL OF MATHEMATICAL STUDY
2009年
4期
375-382
,共8页
图%度序列%蕴含K_4+P_2-可图序列
圖%度序列%蘊含K_4+P_2-可圖序列
도%도서렬%온함K_4+P_2-가도서렬
graph%degree sequence%potentially K_4 + P_2-graphic sequences
对于给定的图H,若存在可图序列π的一个实现包含日作为子图,则称π为蕴含日一可图的.Gould等人考虑了下述极值问题的变形:确定最小的偶整数σ(H,n),使得每个满足σ(π)≥σ(H,n)的,n项可图序列π=(d_1,d_2,…,d_n)是蕴含H-可图的,其中σ(π)=∑d_i.本文刻划了蕴含K_4+P_2-可图序列,其中K_4+P_2是向K_4的一个顶点添加两条悬挂边后构成的简单图.这一刻划导出σ(K_4+P_2,n)的值.
對于給定的圖H,若存在可圖序列π的一箇實現包含日作為子圖,則稱π為蘊含日一可圖的.Gould等人攷慮瞭下述極值問題的變形:確定最小的偶整數σ(H,n),使得每箇滿足σ(π)≥σ(H,n)的,n項可圖序列π=(d_1,d_2,…,d_n)是蘊含H-可圖的,其中σ(π)=∑d_i.本文刻劃瞭蘊含K_4+P_2-可圖序列,其中K_4+P_2是嚮K_4的一箇頂點添加兩條懸掛邊後構成的簡單圖.這一刻劃導齣σ(K_4+P_2,n)的值.
대우급정적도H,약존재가도서렬π적일개실현포함일작위자도,칙칭π위온함일일가도적.Gould등인고필료하술겁치문제적변형:학정최소적우정수σ(H,n),사득매개만족σ(π)≥σ(H,n)적,n항가도서렬π=(d_1,d_2,…,d_n)시온함H-가도적,기중σ(π)=∑d_i.본문각화료온함K_4+P_2-가도서렬,기중K_4+P_2시향K_4적일개정점첨가량조현괘변후구성적간단도.저일각화도출σ(K_4+P_2,n)적치.
For a given graph H, a graphic sequence π is potentially H-graphic if there is a realization of π containing H as a subgraph. Gould et al. considered an extremal problem on potentially H-graphic sequences as follows: determine the smallest even integer σ(H,n) such that every n-term positive graphic sequence π=(d_1,d_2,…,d_n) with σ(π)≥σ(H,n) has a realization Gcontaining H as a subgraph, where σ(π) = ∑ d_i. In this paper, we characterize the potentially K_4+P_2-graphic sequences, where K_4 + P_2 is a graph obtained by adding two pendent edges to a vertex on K_4. The characterization implies the value of σ(K_4 + P_2, n).