计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2014年
18期
251-256,260
,共7页
张淼%欧幸福%唐雄民%陈文凤
張淼%歐倖福%唐雄民%陳文鳳
장묘%구행복%당웅민%진문봉
脉冲耦合神经网络%链齿缺陷检测%图像处理%灰度跃变
脈遲耦閤神經網絡%鏈齒缺陷檢測%圖像處理%灰度躍變
맥충우합신경망락%련치결함검측%도상처리%회도약변
Pulse Coupled Neural Networks(PCNN)%scoops defect detection%image preprocessing%gray level mutation
针对传统金属拉链缺陷人工检测方法效率低、稳定性差、误检率高等缺点,提出一种基于脉冲耦合神经网络(Pulse Coupled Neural Networks,PCNN)和灰度跃变检测的金属拉链缺陷检测方法。针对拉链图像的特点,通过对传统PCNN进行改进以提高金属拉链图像二值分割处理速度;将传统PCNN和形态学理论相结合,提取链齿特征图像;采用区域像素统计与灰度跃变检测的方法实现金属拉链缺陷自动检测;完成检测系统的设计并进行实验研究。实验结果表明提出的检测方法快速、准确、可行。
針對傳統金屬拉鏈缺陷人工檢測方法效率低、穩定性差、誤檢率高等缺點,提齣一種基于脈遲耦閤神經網絡(Pulse Coupled Neural Networks,PCNN)和灰度躍變檢測的金屬拉鏈缺陷檢測方法。針對拉鏈圖像的特點,通過對傳統PCNN進行改進以提高金屬拉鏈圖像二值分割處理速度;將傳統PCNN和形態學理論相結閤,提取鏈齒特徵圖像;採用區域像素統計與灰度躍變檢測的方法實現金屬拉鏈缺陷自動檢測;完成檢測繫統的設計併進行實驗研究。實驗結果錶明提齣的檢測方法快速、準確、可行。
침대전통금속랍련결함인공검측방법효솔저、은정성차、오검솔고등결점,제출일충기우맥충우합신경망락(Pulse Coupled Neural Networks,PCNN)화회도약변검측적금속랍련결함검측방법。침대랍련도상적특점,통과대전통PCNN진행개진이제고금속랍련도상이치분할처리속도;장전통PCNN화형태학이론상결합,제취련치특정도상;채용구역상소통계여회도약변검측적방법실현금속랍련결함자동검측;완성검측계통적설계병진행실험연구。실험결과표명제출적검측방법쾌속、준학、가행。
Traditional manual method of metal zipper defects detection has the features of inefficiency, poor stability and high false positive rate. To these problems, this paper presents a new detection method based on Pulse Coupled Neural Network(PCNN)and gray mutation detection. Depending on the characteristics of metal zipper image, the processing speed of image segmentation will be increased by improving the traditional PCNN, which can extract the feature images of zipper scoops by combining with morphology. A new proposed method can automatically distinguish the metal zipper scoops defects through the region pixel statistics and gray mutation detection. A detection system is designed for this experi-mental study. Experiment results show the detection method of this paper is quick, accurate and feasible.