分析化学
分析化學
분석화학
CHINESE JOURNAL OF ANALYTICAL CHEMISTRY
2015年
2期
239-244
,共6页
樊书祥%黄文倩%郭志明%张保华%赵春江%钱曼
樊書祥%黃文倩%郭誌明%張保華%趙春江%錢曼
번서상%황문천%곽지명%장보화%조춘강%전만
苹果%产地%近红外光谱%可溶性固形物
蘋果%產地%近紅外光譜%可溶性固形物
평과%산지%근홍외광보%가용성고형물
Apple%Origin%Near infrared spectrum%Soluble solid content
为更好地利用近红外光谱预测苹果可溶性固形物含量,减少产地差异对近红外光谱检测模型的影响,以4种不同产地的富士苹果为研究对象,采用基于x-y共生距离的样本划分方法分别对不同产地的苹果选取代表性样本作为校正集,利用偏最小二乘算法,建立和比较单一产地和混合产地下的苹果可溶性固形物近红外光谱检测模型,并结合竞争性自适应重加权算法( CARS)和连续投影算法( SPA)对苹果可溶性固形物的建模变量进行筛选。相比单一产地和其它混合产地模型,混合所有4种苹果产地的校正集样本建立的模型取得了最好的预测结果,另外,结合CARS-SPA筛选的16个特征波长,模型得到了进一步简化,其预测相关系数和预测均方根误差分别为0.978和0.441oBrix。结果表明,利用多个产地的苹果样本建立的混合模型,结合有效特征波长,可提高对苹果可溶性固形物含量的预测精度,减小产地差异对可溶性固形物近红外光谱检测的影响。
為更好地利用近紅外光譜預測蘋果可溶性固形物含量,減少產地差異對近紅外光譜檢測模型的影響,以4種不同產地的富士蘋果為研究對象,採用基于x-y共生距離的樣本劃分方法分彆對不同產地的蘋果選取代錶性樣本作為校正集,利用偏最小二乘算法,建立和比較單一產地和混閤產地下的蘋果可溶性固形物近紅外光譜檢測模型,併結閤競爭性自適應重加權算法( CARS)和連續投影算法( SPA)對蘋果可溶性固形物的建模變量進行篩選。相比單一產地和其它混閤產地模型,混閤所有4種蘋果產地的校正集樣本建立的模型取得瞭最好的預測結果,另外,結閤CARS-SPA篩選的16箇特徵波長,模型得到瞭進一步簡化,其預測相關繫數和預測均方根誤差分彆為0.978和0.441oBrix。結果錶明,利用多箇產地的蘋果樣本建立的混閤模型,結閤有效特徵波長,可提高對蘋果可溶性固形物含量的預測精度,減小產地差異對可溶性固形物近紅外光譜檢測的影響。
위경호지이용근홍외광보예측평과가용성고형물함량,감소산지차이대근홍외광보검측모형적영향,이4충불동산지적부사평과위연구대상,채용기우x-y공생거리적양본화분방법분별대불동산지적평과선취대표성양본작위교정집,이용편최소이승산법,건립화비교단일산지화혼합산지하적평과가용성고형물근홍외광보검측모형,병결합경쟁성자괄응중가권산법( CARS)화련속투영산법( SPA)대평과가용성고형물적건모변량진행사선。상비단일산지화기타혼합산지모형,혼합소유4충평과산지적교정집양본건립적모형취득료최호적예측결과,령외,결합CARS-SPA사선적16개특정파장,모형득도료진일보간화,기예측상관계수화예측균방근오차분별위0.978화0.441oBrix。결과표명,이용다개산지적평과양본건립적혼합모형,결합유효특정파장,가제고대평과가용성고형물함량적예측정도,감소산지차이대가용성고형물근홍외광보검측적영향。
In order to improve the precision and robustness in determination of soluble solids content ( SSC) of ‘Fuji ’ apple by NIR spectroscopy and eliminate the effect of origin variability on the accuracy of NIR calibration models for the SSC, sample set partitioning based on joint x-y distances ( SPXY) was used to select representative subset from the apple samples of 4 different origins. As a comparison, partial least square ( PLS) was used to establish local origin and hybrid origin models for the prediction of SSC in apple. Competitive adaptive reweighted sampling ( CARS ) and successive projections algorithm ( SPA ) were implemented to select effective variables of the NIR spectroscopy of SSC of apple. The results indicated that the PLS model established based on the 4 origin apple samples performed better than local origin and other hybrid origin models. The model could be effectively simplified using 16 characteristic variables selected by CARS-SPA method from full-spectrum which had 3112 wavelengths. The correlation coefficient (Rp) and root mean square error of prediction (RMSEP) were 0. 978 and 0. 441 oBrix, respectively for SSC. It was found that the model developed by more samples of different origins combined with effective wavelengths showed good prediction ability for apple sample of unknown origin, which indicated that it could significantly reduce the origin effect on the robustness of NIR models for SSC of apple.