计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
9期
68-71
,共4页
I形图%匹配多项式%匹配等价
I形圖%匹配多項式%匹配等價
I형도%필배다항식%필배등개
graphs of I shape%matching polynomial%matching equivalence
两个图G和H 的匹配多项式相等,则称它们匹配等价。用δ(G)表示图G的所有不同构的匹配等价图的个数。In(n≥6)表示由路Pn-4的两个端点分别粘接一个P3的2度点后得到的图。计算了一些I形图并图的匹配等价图的个数,即δ?è???÷i?A Ii ,这里 A是一些大于等于6的整数组成的可重集。
兩箇圖G和H 的匹配多項式相等,則稱它們匹配等價。用δ(G)錶示圖G的所有不同構的匹配等價圖的箇數。In(n≥6)錶示由路Pn-4的兩箇耑點分彆粘接一箇P3的2度點後得到的圖。計算瞭一些I形圖併圖的匹配等價圖的箇數,即δ?è???÷i?A Ii ,這裏 A是一些大于等于6的整數組成的可重集。
량개도G화H 적필배다항식상등,칙칭타문필배등개。용δ(G)표시도G적소유불동구적필배등개도적개수。In(n≥6)표시유로Pn-4적량개단점분별점접일개P3적2도점후득도적도。계산료일사I형도병도적필배등개도적개수,즉δ?è???÷i?A Ii ,저리 A시일사대우등우6적정수조성적가중집。
Two graphs G and H are said to be matching equivalent if they possess the same matching polynomials.δ(G) denotes the number of graphs which are matching equivalent to graph G. This paper lets Pn-2 be a path with vertices sequence x1,x2,,xn?2. In(n≥6) denotes the tree obtained from Pn?2 by adding pendant edges at vertices x2 and xn?3 , respectively. It computes the number of graphs of matching equivalent to the union graphs of I shape. Namely, δ?. è ? ? ? ÷i?A Ii A is a repeated set of integers of great than or equal 6