计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2015年
15期
249-254
,共6页
张森%石为人%石欣%郭宝丽
張森%石為人%石訢%郭寶麗
장삼%석위인%석흔%곽보려
水质预测%偏最小二乘回归%支持向量机%预测模型%粒子群优化算法
水質預測%偏最小二乘迴歸%支持嚮量機%預測模型%粒子群優化算法
수질예측%편최소이승회귀%지지향량궤%예측모형%입자군우화산법
prediction of water quality%partial least squares regression%support vector machine%prediction model%Particle Swarm Optimization(PSO)
针对传统水质预测方法中水质因子的多重相关性造成预测精度低的问题,提出了一种将偏最小二乘法和支持向量机相耦合的水质预测方法。利用偏最小二乘法提取对水质因子影响强的成分,从而克服了信息冗余问题,并降低了支持向量的维数。利用支持向量机建模可以较好地解决高维非线性小样本问题。同时利用改进的PSO算法优化SVM参数,减小参数搜索的盲目性。研究结果表明,本耦合模型的预测精度和运行效率明显优于常用的BP人工神经网络和传统的支持向量机,可以更好地应用于水质预测。
針對傳統水質預測方法中水質因子的多重相關性造成預測精度低的問題,提齣瞭一種將偏最小二乘法和支持嚮量機相耦閤的水質預測方法。利用偏最小二乘法提取對水質因子影響彊的成分,從而剋服瞭信息冗餘問題,併降低瞭支持嚮量的維數。利用支持嚮量機建模可以較好地解決高維非線性小樣本問題。同時利用改進的PSO算法優化SVM參數,減小參數搜索的盲目性。研究結果錶明,本耦閤模型的預測精度和運行效率明顯優于常用的BP人工神經網絡和傳統的支持嚮量機,可以更好地應用于水質預測。
침대전통수질예측방법중수질인자적다중상관성조성예측정도저적문제,제출료일충장편최소이승법화지지향량궤상우합적수질예측방법。이용편최소이승법제취대수질인자영향강적성분,종이극복료신식용여문제,병강저료지지향량적유수。이용지지향량궤건모가이교호지해결고유비선성소양본문제。동시이용개진적PSO산법우화SVM삼수,감소삼수수색적맹목성。연구결과표명,본우합모형적예측정도화운행효솔명현우우상용적BP인공신경망락화전통적지지향량궤,가이경호지응용우수질예측。
Concerning the problem of low prediction accuracy because of multiple correlation factor in the traditional water quality prediction method, this paper introduces a partial least squares and support vector machine coupled method—the water quality prediction method(PLS-SVM). Using partial least squares method extracts the variable component with strong influence, overcoming the information redundancy and reducing the dimension of support vectors. And using support vector machine modeling can be a better solution to the problem of high-dimensional nonlinear small samples. And using improved PSO algorithm to optimize SVM parameters reduces the parametric searching blindness. The results show that the coupled model fitting and forecasting accuracy is significantly better than the commonly used BP artificial neural net-works and traditional SVM, can be better used in water quality prediction.