数学研究
數學研究
수학연구
JOURNAL OF MATHEMATICAL STUDY
2011年
3期
302-308
,共7页
非局部时滞%稳定性%行波解%反应扩散方程
非跼部時滯%穩定性%行波解%反應擴散方程
비국부시체%은정성%행파해%반응확산방정
Nonlocal Delays%stability%traveling wave front%reaction-diffusion equation
构造并研究了一类具有非局部时滞Schoner竞争反应扩散模型.每一个种群的成熟期是一个常数,而且只有成年种群存在竞争,幼年的种群并不存在竞争,此外种群个体在空间区域中的运动是随机行走的.我们利用Wang,Li和Ruan建立的具有非局部时滞的反应扩散系统的波前解存在性理论,证明了连接两个边界平衡解的行波解的存在性.
構造併研究瞭一類具有非跼部時滯Schoner競爭反應擴散模型.每一箇種群的成熟期是一箇常數,而且隻有成年種群存在競爭,幼年的種群併不存在競爭,此外種群箇體在空間區域中的運動是隨機行走的.我們利用Wang,Li和Ruan建立的具有非跼部時滯的反應擴散繫統的波前解存在性理論,證明瞭連接兩箇邊界平衡解的行波解的存在性.
구조병연구료일류구유비국부시체Schoner경쟁반응확산모형.매일개충군적성숙기시일개상수,이차지유성년충군존재경쟁,유년적충군병불존재경쟁,차외충군개체재공간구역중적운동시수궤행주적.아문이용Wang,Li화Ruan건립적구유비국부시체적반응확산계통적파전해존재성이론,증명료련접량개변계평형해적행파해적존재성.
In this paper, the author proposed and considered a Schoner reaction-diffusion equation in competing model with nonlocal delays . Each species in the discrete delay type model has a corresponding constant maturation time. Only the adult members are involved competition and immature members are in the absence of competition. We established the existence of traveling wave fronts connecting two boundary equilibriums. The approach used in this paper is the upper-lower solutions technique and monotone iteration by Wang, Li and Ruan for reaction-diffusion systems with spatio-temporal delays.